These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20137657)

  • 41. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment.
    Korhonen RK; Jurvelin JS
    Med Eng Phys; 2010 Mar; 32(2):155-60. PubMed ID: 19955010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone.
    Ohman C; Dall'Ara E; Baleani M; Van Sint Jan S; Viceconti M
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1294-8. PubMed ID: 18771829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constitutive models for constrained compression of unimpacted and impacted human morselized bone grafts.
    Lunde KB; Foss OA; Fosse L; Skallerud B
    J Biomech Eng; 2008 Dec; 130(6):061014. PubMed ID: 19045543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [A comparative study on experimental and mathematical analysis of mechanical properties of PFM].
    Chen X; Yao W; Tian B; Zhu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):987-90. PubMed ID: 15646348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.
    Li Z; Alonso JE; Kim JE; Davidson JS; Etheridge BS; Eberhardt AW
    Ann Biomed Eng; 2006 Sep; 34(9):1452-62. PubMed ID: 16897423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone.
    Austman RL; Milner JS; Holdsworth DW; Dunning CE
    J Biomech; 2008 Nov; 41(15):3171-6. PubMed ID: 18922532
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Compressive mechanical properties of demineralized and deproteinized cancellous bone.
    Chen PY; McKittrick J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):961-73. PubMed ID: 21783106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the Effects of Formalin Fixation on the Mechanical Properties of Cortical Bone Using Beam Theory and Optimization Methodology With Specimen-Specific Finite Element Models.
    Zhang GJ; Yang J; Guan FJ; Chen D; Li N; Cao L; Mao H
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27447849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of specimen geometry on tensile strength of cortical bone.
    Feng L; Jasiuk I
    J Biomed Mater Res A; 2010 Nov; 95(2):580-7. PubMed ID: 20725962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur.
    Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R
    J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of heterogeneous elastic properties in stenosed arteries: a numerical plane strain study.
    Franquet A; Avril S; Le Riche R; Badel P
    Comput Methods Biomech Biomed Engin; 2012; 15(1):49-58. PubMed ID: 21607891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elastic modulus varies along the bovine femur.
    Nobakhti S; Katsamenis OL; Zaarour N; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():279-285. PubMed ID: 28371701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic Finite Element Analysis of Impulsive Stress Waves Propagating from the Greater Trochanter of the Femur by a Sideways Fall.
    Sarai T; Tokumoto A
    Acta Med Okayama; 2015; 69(3):165-71. PubMed ID: 26101192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microtensile measurements of single trabeculae stiffness in human femur.
    Bini F; Marinozzi A; Marinozzi F; Patanè F
    J Biomech; 2002 Nov; 35(11):1515-9. PubMed ID: 12413971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiscale investigation of the functional properties of the human femur.
    Cristofolini L; Taddei F; Baleani M; Baruffaldi F; Stea S; Viceconti M
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3319-41. PubMed ID: 18593659
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scaling of form and function in the xenarthran femur: a 100-fold increase in body mass is mitigated by repositioning of the third trochanter.
    Milne N; O'Higgins P
    Proc Biol Sci; 2012 Sep; 279(1742):3449-56. PubMed ID: 22673355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Experimental Study to Measure the Mechanical Properties of the Human Liver.
    Karimi A; Shojaei A
    Dig Dis; 2018; 36(2):150-155. PubMed ID: 29131053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.
    Yao Y; Lacroix D; Mak AF
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1495-1508. PubMed ID: 26994918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-dependent changes in dynamic mechanical properties of irradiated bone.
    Mardas M; Kubisz L; Biskupski P; Mielcarek S
    Biomed Mater Eng; 2015; 25(4):397-403. PubMed ID: 26407201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.