These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20137917)

  • 1. Population dynamics in a sequencing batch reactor fed with glucose and operated for enhanced biological phosphorus removal.
    Zengin GE; Artan N; Orhon D; Chua AS; Satoh H; Mino T
    Bioresour Technol; 2010 Jun; 101(11):4000-5. PubMed ID: 20137917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source.
    Kumar BM; Chaudhari S
    Water Sci Technol; 2003; 48(3):73-9. PubMed ID: 14518857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources.
    Oehmen A; Saunders AM; Vives MT; Yuan Z; Keller J
    J Biotechnol; 2006 May; 123(1):22-32. PubMed ID: 16293332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biological phosphorus removal in a semi full-scale SBBR.
    Arnz P; Arnold E; Wilderer PA
    Water Sci Technol; 2001; 43(3):167-74. PubMed ID: 11381901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor.
    Jeon CO; Lee DS; Park JM
    Water Res; 2003 May; 37(9):2195-205. PubMed ID: 12691905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enhanced biological phosphorus removal (EBPR) control strategy for sequencing batch reactors (SBRs).
    Dassanayake CY; Irvine RL
    Water Sci Technol; 2001; 43(3):183-9. PubMed ID: 11381903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure.
    Zengin GE; Artan N; Orhon D; Satoh H; Mino T
    Bioresour Technol; 2011 Jan; 102(2):894-903. PubMed ID: 20926291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.
    Pijuan M; Saunders AM; Guisasola A; Baeza JA; Casas C; Blackall LL
    Biotechnol Bioeng; 2004 Jan; 85(1):56-67. PubMed ID: 14705012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios.
    Yagci N; Insel G; Tasli R; Artan N; Randall CW; Orhon D
    Biotechnol Bioeng; 2006 Feb; 93(2):258-70. PubMed ID: 16261629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional morphological and functional evaluation of the microbial populations in a sequencing batch reactor performing EBPR.
    Dulekgurgen E; Yesiladali K; Ovez S; Tamerler C; Artan N; Orhon D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Aug; 38(8):1499-515. PubMed ID: 12929804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance.
    Erdal UG; Erdal ZK; Randall CW
    Water Sci Technol; 2003; 47(11):1-8. PubMed ID: 12906264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of an EBPR population developed in an SBR with propionate to different carbon sources.
    Pijuan M; Baeza JA; Casas C; Lafuente J
    Water Sci Technol; 2004; 50(10):131-8. PubMed ID: 15656305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms.
    Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J
    Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source.
    Wang D; Li X; Yang Q; Zheng W; Wu Y; Zeng T; Zeng G
    Water Res; 2012 Aug; 46(12):3868-78. PubMed ID: 22609408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature.
    Shen N; Chen Y; Zhou Y
    Water Res; 2017 May; 114():308-315. PubMed ID: 28259067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms.
    Whang LM; Filipe CD; Park JK
    Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate.
    Onuki M; Satoh H; Mino T
    Water Sci Technol; 2002; 46(1-2):145-53. PubMed ID: 12216616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrifying phosphorus removal: linking the process performance with the microbial community structure.
    Carvalho G; Lemos PC; Oehmen A; Reis MA
    Water Res; 2007 Nov; 41(19):4383-96. PubMed ID: 17669460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.