BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20137959)

  • 21. Signal transduction during oxidative stress.
    Vranová E; Inzé D; Van Breusegem F
    J Exp Bot; 2002 May; 53(372):1227-36. PubMed ID: 11997371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?
    Tausz M; Sircelj H; Grill D
    J Exp Bot; 2004 Aug; 55(404):1955-62. PubMed ID: 15234995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial redox biology and homeostasis in plants.
    Noctor G; De Paepe R; Foyer CH
    Trends Plant Sci; 2007 Mar; 12(3):125-34. PubMed ID: 17293156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ascorbate and glutathione: the heart of the redox hub.
    Foyer CH; Noctor G
    Plant Physiol; 2011 Jan; 155(1):2-18. PubMed ID: 21205630
    [No Abstract]   [Full Text] [Related]  

  • 25. Glutathione--linking cell proliferation to oxidative stress.
    Diaz-Vivancos P; de Simone A; Kiddle G; Foyer CH
    Free Radic Biol Med; 2015 Dec; 89():1154-64. PubMed ID: 26546102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.
    Couto N; Wood J; Barber J
    Free Radic Biol Med; 2016 Jun; 95():27-42. PubMed ID: 26923386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic monitoring of glutathione redox status in UV-B irradiated reconstituted epidermis: effect of antioxidant activity on skin homeostasis.
    Meloni M; Nicolay JF
    Toxicol In Vitro; 2003; 17(5-6):609-13. PubMed ID: 14599452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative metabolism, ROS and NO under oxygen deprivation.
    Blokhina O; Fagerstedt KV
    Plant Physiol Biochem; 2010 May; 48(5):359-73. PubMed ID: 20303775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox regulation in plant programmed cell death.
    De Pinto MC; Locato V; De Gara L
    Plant Cell Environ; 2012 Feb; 35(2):234-44. PubMed ID: 21711357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.
    Noctor G; Gomez L; Vanacker H; Foyer CH
    J Exp Bot; 2002 May; 53(372):1283-304. PubMed ID: 11997376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling.
    Pignocchi C; Foyer CH
    Curr Opin Plant Biol; 2003 Aug; 6(4):379-89. PubMed ID: 12873534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress: a concept in redox biology and medicine.
    Sies H
    Redox Biol; 2015; 4():180-3. PubMed ID: 25588755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction.
    Juszczuk IM; Szal B; Rychter AM
    Plant Cell Environ; 2012 Feb; 35(2):296-307. PubMed ID: 21414015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis.
    Noshi M; Hatanaka R; Tanabe N; Terai Y; Maruta T; Shigeoka S
    Biosci Biotechnol Biochem; 2016 May; 80(5):870-7. PubMed ID: 26927949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives.
    Ortega-Villasante C; Burén S; Barón-Sola Á; Martínez F; Hernández LE
    Methods; 2016 Oct; 109():92-104. PubMed ID: 27424086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant cell microcompartments: a redox-signaling perspective.
    Zachgo S; Hanke GT; Scheibe R
    Biol Chem; 2013 Feb; 394(2):203-16. PubMed ID: 23241667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress.
    Dietz KJ
    Methods Mol Biol; 2010; 639():57-70. PubMed ID: 20387040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.