BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20137963)

  • 1. Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane.
    Tiroli-Cepeda AO; Ramos CH
    Plant Physiol Biochem; 2010; 48(2-3):108-16. PubMed ID: 20137963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity.
    Tiroli AO; Ramos CH
    Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone function of two small heat shock proteins from maize.
    Klein RD; Chidawanyika T; Tims HS; Meulia T; Bouchard RA; Pett VB
    Plant Sci; 2014 May; 221-222():48-58. PubMed ID: 24656335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial characterization of newly identified mitochondrial and chloroplast small HSPs from sugarcane shows that these chaperones have different oligomerization states and substrate specificities.
    Pinheiro GMS; Ramos CHI
    Plant Physiol Biochem; 2018 Aug; 129():285-294. PubMed ID: 29909242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.
    Park SM; Kim KP; Joe MK; Lee MO; Koo HJ; Hong CB
    Plant Cell Environ; 2015 Apr; 38(4):767-76. PubMed ID: 25158805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.
    Stengel F; Baldwin AJ; Painter AJ; Jaya N; Basha E; Kay LE; Vierling E; Robinson CV; Benesch JL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2007-12. PubMed ID: 20133845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol.
    Basha E; Jones C; Wysocki V; Vierling E
    J Biol Chem; 2010 Apr; 285(15):11489-97. PubMed ID: 20145254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.
    Basha E; Jones C; Blackwell AE; Cheng G; Waters ER; Samsel KA; Siddique M; Pett V; Wysocki V; Vierling E
    J Mol Biol; 2013 May; 425(10):1683-96. PubMed ID: 23416558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.
    Hilario E; Martin FJ; Bertolini MC; Fan L
    J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative bacterial two-component small heat shock protein systems.
    Bepperling A; Alte F; Kriehuber T; Braun N; Weinkauf S; Groll M; Haslbeck M; Buchner J
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20407-12. PubMed ID: 23184973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions.
    Sakono M; Utsumi A; Zako T; Abe T; Yohda M; Maeda M
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1259-64. PubMed ID: 23261462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes.
    Fleckenstein T; Kastenmüller A; Stein ML; Peters C; Daake M; Krause M; Weinfurtner D; Haslbeck M; Weinkauf S; Groll M; Buchner J
    Mol Cell; 2015 Jun; 58(6):1067-78. PubMed ID: 26009280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding site flexibility of the small heat shock protein molecular chaperones.
    Jaya N; Garcia V; Vierling E
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15604-9. PubMed ID: 19717454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings.
    Sarkar NK; Kotak S; Agarwal M; Kim YK; Grover A
    Planta; 2019 Dec; 251(1):26. PubMed ID: 31797121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network.
    Reinle K; Mogk A; Bukau B
    J Mol Biol; 2022 Jan; 434(1):167157. PubMed ID: 34271010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone-like activity of the N-terminal region of a human small heat shock protein and chaperone-functionalized nanoparticles.
    Gliniewicz EF; Chambers KM; De Leon ER; Sibai D; Campbell HC; McMenimen KA
    Proteins; 2019 May; 87(5):401-415. PubMed ID: 30684363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues.
    Fu X; Shi X; Yin L; Liu J; Joo K; Lee J; Chang Z
    J Biol Chem; 2013 Apr; 288(17):11897-906. PubMed ID: 23486475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechanism for small heat shock proteins to function as molecular chaperones.
    Zhang K; Ezemaduka AN; Wang Z; Hu H; Shi X; Liu C; Lu X; Fu X; Chang Z; Yin CC
    Sci Rep; 2015 Mar; 5():8811. PubMed ID: 25744691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a sHsp of Schizosaccharomyces pombe, SpHsp15.8, and the implication of its functional mechanism by comparison with another sHsp, SpHsp16.0.
    Sugino C; Hirose M; Tohda H; Yoshinari Y; Abe T; Giga-Hama Y; Iizuka R; Shimizu M; Kidokoro S; Ishii N; Yohda M
    Proteins; 2009 Jan; 74(1):6-17. PubMed ID: 18543332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.