These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Klink VP; Hosseini P; Matsye P; Alkharouf NW; Matthews BF Plant Mol Biol; 2009 Dec; 71(6):525-67. PubMed ID: 19787434 [TBL] [Abstract][Full Text] [Related]
3. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. Klink VP; Hosseini P; MacDonald MH; Alkharouf NW; Matthews BF BMC Genomics; 2009 Mar; 10():111. PubMed ID: 19291306 [TBL] [Abstract][Full Text] [Related]
4. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Klink VP; Hosseini P; Matsye PD; Alkharouf NW; Matthews BF Plant Mol Biol; 2011 Jan; 75(1-2):141-65. PubMed ID: 21153862 [TBL] [Abstract][Full Text] [Related]
5. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. Kandoth PK; Ithal N; Recknor J; Maier T; Nettleton D; Baum TJ; Mitchum MG Plant Physiol; 2011 Apr; 155(4):1960-75. PubMed ID: 21335526 [TBL] [Abstract][Full Text] [Related]
6. Glycine max polygalacturonase inhibiting protein 11 (GmPGIP11) functions in the root to suppress Heterodera glycines parasitism. Acharya S; Troell HA; Billingsley RL; Lawrence KS; McKirgan DS; Alkharouf NW; Klink VP Plant Physiol Biochem; 2024 Aug; 213():108755. PubMed ID: 38875777 [TBL] [Abstract][Full Text] [Related]
7. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds. McNeece BT; Pant SR; Sharma K; Niruala P; Lawrence GW; Klink VP Plant Physiol Biochem; 2017 May; 114():60-71. PubMed ID: 28273511 [TBL] [Abstract][Full Text] [Related]
8. Analysis of expressed sequence tags from roots of resistant soybean infected by the soybean cyst nematode. Alkharouf N; Khan R; Matthews B Genome; 2004 Apr; 47(2):380-8. PubMed ID: 15060591 [TBL] [Abstract][Full Text] [Related]
9. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines. Pant SR; Krishnavajhala A; McNeece BT; Lawrence GW; Klink VP Plant Signal Behav; 2015; 10(1):e977737. PubMed ID: 25530246 [TBL] [Abstract][Full Text] [Related]
10. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection. Li S; Chen Y; Zhu X; Wang Y; Jung KH; Chen L; Xuan Y; Duan Y J Plant Physiol; 2018 Jan; 220():96-104. PubMed ID: 29169106 [TBL] [Abstract][Full Text] [Related]
11. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. Lawaju BR; Lawrence KS; Lawrence GW; Klink VP Plant Physiol Biochem; 2018 Aug; 129():331-348. PubMed ID: 29936240 [TBL] [Abstract][Full Text] [Related]
13. Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode). Sharma K; Niraula PM; Troell HA; Adhikari M; Alshehri HA; Alkharouf NW; Lawrence KS; Klink VP Sci Rep; 2020 Sep; 10(1):15003. PubMed ID: 32929168 [TBL] [Abstract][Full Text] [Related]
14. The central circadian regulator CCA1 functions in Glycine max during defense to a root pathogen, regulating the expression of genes acting in effector triggered immunity (ETI) and cell wall metabolism. Niraula PM; McNeece BT; Sharma K; Alkharouf NW; Lawrence KS; Klink VP Plant Physiol Biochem; 2022 Aug; 185():198-220. PubMed ID: 35704989 [TBL] [Abstract][Full Text] [Related]
15. Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines. Niraula PM; Sharma K; McNeece BT; Troell HA; Darwish O; Alkharouf NW; Lawrence KS; Klink VP PLoS One; 2020; 15(11):e0241678. PubMed ID: 33147292 [TBL] [Abstract][Full Text] [Related]
16. Manipulation of two α-endo-β-1,4-glucanase genes, AtCel6 and GmCel7, reduces susceptibility to Heterodera glycines in soybean roots. Woo MO; Beard H; MacDonald MH; Brewer EP; Youssef RM; Kim H; Matthews BF Mol Plant Pathol; 2014 Dec; 15(9):927-39. PubMed ID: 24844661 [TBL] [Abstract][Full Text] [Related]
17. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. Miraeiz E; Chaiprom U; Afsharifar A; Karegar A; M Drnevich J; E Hudson M Theor Appl Genet; 2020 Jan; 133(1):87-102. PubMed ID: 31570969 [TBL] [Abstract][Full Text] [Related]
18. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Klink VP; Overall CC; Alkharouf NW; MacDonald MH; Matthews BF Planta; 2007 Nov; 226(6):1423-47. PubMed ID: 17653570 [TBL] [Abstract][Full Text] [Related]