These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20138895)

  • 1. Catabolite repression of SOS-dependent and SOS-independent spontaneous mutagenesis in stationary-phase Escherichia coli.
    MacPhee DG; Ambrose M
    Mutat Res; 2010 Apr; 686(1-2):84-9. PubMed ID: 20138895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite repressors are potent antimutagens in Escherichia coli plate incorporation assays: experiments with glucose, glucose-6-phosphate and methyl-alpha-D-glucopyranoside.
    Ambrose M; MacPhee DG
    Mutat Res; 1998 Feb; 398(1-2):175-82. PubMed ID: 9626977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli SOS gene sbmC is regulated by H-NS and RpoS during the SOS induction and stationary growth phase.
    Oh TJ; Jung IL; Kim IG
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1052-8. PubMed ID: 11689018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5.
    Nowosielska A; Janion C; Grzesiuk E
    Environ Mol Mutagen; 2004; 43(4):226-34. PubMed ID: 15141361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the anti-mutagenic effect of genistein in Escherichia coli.
    Yang Y; Fix D
    Mutat Res; 2006 Aug; 600(1-2):193-206. PubMed ID: 16872640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress.
    Hersh MN; Ponder RG; Hastings PJ; Rosenberg SM
    Res Microbiol; 2004 Jun; 155(5):352-9. PubMed ID: 15207867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A source of artifact in the lacZ reversion assay in Escherichia coli.
    Hoffmann GR; Gray CL; Lange PB; Marando CI
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jun; 784-785():23-30. PubMed ID: 26046973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous mutagenesis is elevated in protease-defective cells.
    Al Mamun AA; Humayun MZ
    Mol Microbiol; 2009 Feb; 71(3):629-39. PubMed ID: 19040636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stationary phase-induction of G-->T mutations in Escherichia coli.
    Shu J; Schellhorn HE; Murphy TM
    Mutat Res; 2006 Apr; 596(1-2):106-12. PubMed ID: 16490219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms.
    Hastings PJ; Slack A; Petrosino JF; Rosenberg SM
    PLoS Biol; 2004 Dec; 2(12):e399. PubMed ID: 15550983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of replicative and specialized DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains lacking one or all of SOS-inducible DNA polymerases to 26 chemicals.
    Kokubo K; Yamada M; Kanke Y; Nohmi T
    DNA Repair (Amst); 2005 Sep; 4(10):1160-71. PubMed ID: 16103022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RecA-independent mutagenesis in Escherichia coli may be subject to glucose repression.
    Thomas SM; MacPhee DG
    Mutat Res; 1987 Sep; 180(1):67-73. PubMed ID: 3041205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directionality of DNA replication fork movement strongly affects the generation of spontaneous mutations in Escherichia coli.
    Yoshiyama K; Higuchi K; Matsumura H; Maki H
    J Mol Biol; 2001 Apr; 307(5):1195-206. PubMed ID: 11292335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli.
    Al Mamun AA
    Mutat Res; 2007 Dec; 625(1-2):29-39. PubMed ID: 17586534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of replicative and SOS-inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS-inducible DNA polymerases to 30 chemical mutagens.
    Matsui K; Yamada M; Imai M; Yamamoto K; Nohmi T
    DNA Repair (Amst); 2006 Apr; 5(4):465-78. PubMed ID: 16455311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection-Enhanced Mutagenesis of
    Yamayoshi I; Maisnier-Patin S; Roth JR
    Genetics; 2018 Mar; 208(3):1009-1021. PubMed ID: 29301907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aerobic recA-, umuC-dependent pathway of spontaneous base-pair substitution mutagenesis in Escherichia coli.
    Bhamre S; Gadea BB; Koyama CA; White SJ; Fowler RG
    Mutat Res; 2001 Feb; 473(2):229-47. PubMed ID: 11166040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome.
    Petrosino JF; Galhardo RS; Morales LD; Rosenberg SM
    J Bacteriol; 2009 Oct; 191(19):5881-9. PubMed ID: 19648247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that selected amplification of a bacterial lac frameshift allele stimulates Lac(+) reversion (adaptive mutation) with or without general hypermutability.
    Slechta ES; Liu J; Andersson DI; Roth JR
    Genetics; 2002 Jul; 161(3):945-56. PubMed ID: 12136002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.