BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 20138981)

  • 1. Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform.
    Summerer D; Schracke N; Wu H; Cheng Y; Bau S; Stähler CF; Stähler PF; Beier M
    Genomics; 2010 Apr; 95(4):241-6. PubMed ID: 20138981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance single-chip exon capture allows accurate whole exome sequencing using the Illumina Genome Analyzer.
    Jiang T; Yang L; Jiang H; Tian G; Zhang X
    Sci China Life Sci; 2011 Oct; 54(10):945-52. PubMed ID: 22038007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel sequencing of ataxia genes after array-based enrichment.
    Hoischen A; Gilissen C; Arts P; Wieskamp N; van der Vliet W; Vermeer S; Steehouwer M; de Vries P; Meijer R; Seiqueros J; Knoers NV; Buckley MF; Scheffer H; Veltman JA
    Hum Mutat; 2010 Apr; 31(4):494-9. PubMed ID: 20151403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex amplification of large sets of human exons.
    Porreca GJ; Zhang K; Li JB; Xie B; Austin D; Vassallo SL; LeProust EM; Peck BJ; Emig CJ; Dahl F; Gao Y; Church GM; Shendure J
    Nat Methods; 2007 Nov; 4(11):931-6. PubMed ID: 17934468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Array-based sequence capture and next-generation sequencing for the identification of primary immunodeficiencies.
    Ghosh S; Krux F; Binder V; Gombert M; Niehues T; Feyen O; Laws HJ; Borkhardt A;
    Scand J Immunol; 2012 Mar; 75(3):350-4. PubMed ID: 22017423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct selection of human genomic loci by microarray hybridization.
    Albert TJ; Molla MN; Muzny DM; Nazareth L; Wheeler D; Song X; Richmond TA; Middle CM; Rodesch MJ; Packard CJ; Weinstock GM; Gibbs RA
    Nat Methods; 2007 Nov; 4(11):903-5. PubMed ID: 17934467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat subtraction-mediated sequence capture from a complex genome.
    Fu Y; Springer NM; Gerhardt DJ; Ying K; Yeh CT; Wu W; Swanson-Wagner R; D'Ascenzo M; Millard T; Freeberg L; Aoyama N; Kitzman J; Burgess D; Richmond T; Albert TJ; Barbazuk WB; Jeddeloh JA; Schnable PS
    Plant J; 2010 Jun; 62(5):898-909. PubMed ID: 20230488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of solution-based exome capture methods for next generation sequencing.
    Sulonen AM; Ellonen P; Almusa H; Lepistö M; Eldfors S; Hannula S; Miettinen T; Tyynismaa H; Salo P; Heckman C; Joensuu H; Raivio T; Suomalainen A; Saarela J
    Genome Biol; 2011 Sep; 12(9):R94. PubMed ID: 21955854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling technologies of genomic-scale sequence enrichment for targeted high-throughput sequencing.
    Summerer D
    Genomics; 2009 Dec; 94(6):363-8. PubMed ID: 19720138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide in situ exon capture for selective resequencing.
    Hodges E; Xuan Z; Balija V; Kramer M; Molla MN; Smith SW; Middle CM; Rodesch MJ; Albert TJ; Hannon GJ; McCombie WR
    Nat Genet; 2007 Dec; 39(12):1522-7. PubMed ID: 17982454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole human exome capture for high-throughput sequencing.
    Kim DW; Nam SH; Kim RN; Choi SH; Park HS
    Genome; 2010 Jul; 53(7):568-74. PubMed ID: 20616878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant.
    Bundock PC; Casu RE; Henry RJ
    Plant Biotechnol J; 2012 Aug; 10(6):657-67. PubMed ID: 22624722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of next-generation sequencing versus the microarray in epigenetic research.
    Hurd PJ; Nelson CJ
    Brief Funct Genomic Proteomic; 2009 May; 8(3):174-83. PubMed ID: 19535508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach.
    Bainbridge MN; Warren RL; Hirst M; Romanuik T; Zeng T; Go A; Delaney A; Griffith M; Hickenbotham M; Magrini V; Mardis ER; Sadar MD; Siddiqui AS; Marra MA; Jones SJ
    BMC Genomics; 2006 Sep; 7():246. PubMed ID: 17010196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.
    Lalonde E; Albrecht S; Ha KC; Jacob K; Bolduc N; Polychronakos C; Dechelotte P; Majewski J; Jabado N
    Hum Mutat; 2010 Aug; 31(8):918-23. PubMed ID: 20518025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays.
    Matsuzaki H; Dong S; Loi H; Di X; Liu G; Hubbell E; Law J; Berntsen T; Chadha M; Hui H; Yang G; Kennedy GC; Webster TA; Cawley S; Walsh PS; Jones KW; Fodor SP; Mei R
    Nat Methods; 2004 Nov; 1(2):109-11. PubMed ID: 15782172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole exome and whole genome sequencing.
    Bick D; Dimmock D
    Curr Opin Pediatr; 2011 Dec; 23(6):594-600. PubMed ID: 21881504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CSNP discovery by two-dimensional gene scanning (TDGS)].
    Suh Y
    Exp Mol Med; 2001 Apr; 33(1 Suppl):21-47. PubMed ID: 11708324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cancer genome sequencing by next-generation methods.
    Ross JS; Cronin M
    Am J Clin Pathol; 2011 Oct; 136(4):527-39. PubMed ID: 21917674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exome sequencing takes centre stage in cancer profiling.
    Maher B
    Nature; 2009 May; 459(7244):146-7. PubMed ID: 19444175
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.