These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 20139001)
1. Specific coiled-coil interactions contribute to a global model of the structure of the spindle pole body. Zizlsperger N; Keating AE J Struct Biol; 2010 May; 170(2):246-56. PubMed ID: 20139001 [TBL] [Abstract][Full Text] [Related]
2. Analysis of coiled-coil interactions between core proteins of the spindle pole body. Zizlsperger N; Malashkevich VN; Pillay S; Keating AE Biochemistry; 2008 Nov; 47(45):11858-68. PubMed ID: 18850724 [TBL] [Abstract][Full Text] [Related]
3. A ternary membrane protein complex anchors the spindle pole body in the nuclear envelope in budding yeast. Kupke T; Malsam J; Schiebel E J Biol Chem; 2017 May; 292(20):8447-8458. PubMed ID: 28356353 [TBL] [Abstract][Full Text] [Related]
4. The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. Schramm C; Elliott S; Shevchenko A; Schiebel E EMBO J; 2000 Feb; 19(3):421-33. PubMed ID: 10654940 [TBL] [Abstract][Full Text] [Related]
5. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. Kilmartin JV; Goh PY EMBO J; 1996 Sep; 15(17):4592-602. PubMed ID: 8887551 [TBL] [Abstract][Full Text] [Related]
6. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. Knop M; Pereira G; Geissler S; Grein K; Schiebel E EMBO J; 1997 Apr; 16(7):1550-64. PubMed ID: 9130700 [TBL] [Abstract][Full Text] [Related]
7. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. Walshaw J; Woolfson DN J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353 [TBL] [Abstract][Full Text] [Related]
8. A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking. Zhang H; Chen J; Wang Y; Peng L; Dong X; Lu Y; Keating AE; Jiang T J Mol Biol; 2009 Sep; 392(1):228-41. PubMed ID: 19591838 [TBL] [Abstract][Full Text] [Related]
9. The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. Jaspersen SL; Martin AE; Glazko G; Giddings TH; Morgan G; Mushegian A; Winey M J Cell Biol; 2006 Aug; 174(5):665-75. PubMed ID: 16923827 [TBL] [Abstract][Full Text] [Related]
10. Are trigger sequences essential in the folding of two-stranded alpha-helical coiled-coils? Lee DL; Lavigne P; Hodges RS J Mol Biol; 2001 Feb; 306(3):539-53. PubMed ID: 11178912 [TBL] [Abstract][Full Text] [Related]
11. Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Flory MR; Morphew M; Joseph JD; Means AR; Davis TN Cell Growth Differ; 2002 Feb; 13(2):47-58. PubMed ID: 11864908 [TBL] [Abstract][Full Text] [Related]
12. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils. Zhou NE; Kay CM; Hodges RS J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708 [TBL] [Abstract][Full Text] [Related]
13. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions. Iranzo O; Ghosh D; Pecoraro VL Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192 [TBL] [Abstract][Full Text] [Related]
14. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. Peng H; Begg GE; Schultz DC; Friedman JR; Jensen DE; Speicher DW; Rauscher FJ J Mol Biol; 2000 Feb; 295(5):1139-62. PubMed ID: 10653693 [TBL] [Abstract][Full Text] [Related]
15. Spc24 interacts with Mps2 and is required for chromosome segregation, but is not implicated in spindle pole body duplication. Le Masson I; Saveanu C; Chevalier A; Namane A; Gobin R; Fromont-Racine M; Jacquier A; Mann C Mol Microbiol; 2002 Mar; 43(6):1431-43. PubMed ID: 11952896 [TBL] [Abstract][Full Text] [Related]
16. Sequence divergence of coiled coils--structural rods, myosin filament packing, and the extraordinary conservation of cohesins. White GE; Erickson HP J Struct Biol; 2006 May; 154(2):111-21. PubMed ID: 16495084 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs. Strauss HM; Keller S Handb Exp Pharmacol; 2008; (186):461-82. PubMed ID: 18491064 [TBL] [Abstract][Full Text] [Related]
18. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional electron microscopy analysis of ndc10-1 mutant reveals an aberrant organization of the mitotic spindle and spindle pole body defects in Saccharomyces cerevisiae. Romao M; Tanaka K; Sibarita JB; Ly-Hartig NT; Tanaka TU; Antony C J Struct Biol; 2008 Jul; 163(1):18-28. PubMed ID: 18515145 [TBL] [Abstract][Full Text] [Related]
20. The many types of interhelical ionic interactions in coiled coils - an overview. Meier M; Stetefeld J; Burkhard P J Struct Biol; 2010 May; 170(2):192-201. PubMed ID: 20211731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]