BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20139081)

  • 1. A fused alpha-beta "mini-spectrin" mimics the intact erythrocyte spectrin head-to-head tetramer.
    Harper SL; Li D; Maksimova Y; Gallagher PG; Speicher DW
    J Biol Chem; 2010 Apr; 285(14):11003-12. PubMed ID: 20139081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive model of the spectrin divalent tetramer binding region deduced using homology modeling and chemical cross-linking of a mini-spectrin.
    Li D; Harper SL; Tang HY; Maksimova Y; Gallagher PG; Speicher DW
    J Biol Chem; 2010 Sep; 285(38):29535-45. PubMed ID: 20610390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides.
    DeSilva TM; Peng KC; Speicher KD; Speicher DW
    Biochemistry; 1992 Nov; 31(44):10872-8. PubMed ID: 1420200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting.
    Speicher DW; DeSilva TM; Speicher KD; Ursitti JA; Hembach P; Weglarz L
    J Biol Chem; 1993 Feb; 268(6):4227-35. PubMed ID: 8440706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site.
    Ursitti JA; Kotula L; DeSilva TM; Curtis PJ; Speicher DW
    J Biol Chem; 1996 Mar; 271(12):6636-44. PubMed ID: 8636080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation.
    Harper SL; Sriswasdi S; Tang HY; Gaetani M; Gallagher PG; Speicher DW
    Blood; 2013 Oct; 122(17):3045-53. PubMed ID: 23974198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site.
    Kotula L; DeSilva TM; Speicher DW; Curtis PJ
    J Biol Chem; 1993 Jul; 268(20):14788-93. PubMed ID: 8325856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane.
    An X; Lecomte MC; Chasis JA; Mohandas N; Gratzer W
    J Biol Chem; 2002 Aug; 277(35):31796-800. PubMed ID: 12105217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the nonerythroid alpha-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation.
    Mehboob S; Song Y; Witek M; Long F; Santarsiero BD; Johnson ME; Fung LW
    J Biol Chem; 2010 May; 285(19):14572-84. PubMed ID: 20228407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry.
    Sriswasdi S; Harper SL; Tang HY; Gallagher PG; Speicher DW
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1801-6. PubMed ID: 24453214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of spectrin in hereditary elliptocytes containing truncated spectrin beta-chains.
    Eber SW; Morris SA; Schröter W; Gratzer WB
    J Clin Invest; 1988 Feb; 81(2):523-30. PubMed ID: 3276733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits.
    Davis J; Bennett V
    J Biol Chem; 1983 Jun; 258(12):7757-66. PubMed ID: 6863263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of terminal nonhomologous domains in initiation of human red cell spectrin dimerization.
    Harper SL; Begg GE; Speicher DW
    Biochemistry; 2001 Aug; 40(33):9935-43. PubMed ID: 11502188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction.
    Cherry L; Menhart N; Fung LW
    J Biol Chem; 1999 Jan; 274(4):2077-84. PubMed ID: 9890967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of erythrocyte membrane-skeletal cohesion by the spectrin-membrane linkage.
    Blanc L; Salomao M; Guo X; An X; Gratzer W; Mohandas N
    Biochemistry; 2010 Jun; 49(21):4516-23. PubMed ID: 20433199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Important region in the beta-spectrin C-terminus for spectrin tetramer formation.
    Luo BH; Mehboob S; Hurtuk MG; Pipalia NH; Fung LW
    Eur J Haematol; 2002 Feb; 68(2):73-9. PubMed ID: 12038451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias?
    Giorgi M; Cianci CD; Gallagher PG; Morrow JS
    Exp Mol Pathol; 2001 Jun; 70(3):215-30. PubMed ID: 11418000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Important residue (G46) in erythroid spectrin tetramer formation.
    Kang J; Song Y; Sevinc A; Fung LW
    Cell Mol Biol Lett; 2010; 15(1):46-54. PubMed ID: 19756397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site.
    Gaetani M; Mootien S; Harper S; Gallagher PG; Speicher DW
    Blood; 2008 Jun; 111(12):5712-20. PubMed ID: 18218854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrin cagliari. an Ala-->Gly substitution in helix 1 of beta spectrin repeat 17 that severely disrupts the structure and self-association of the erythrocyte spectrin heterodimer.
    Sahr KE; Coetzer TL; Moy LS; Derick LH; Chishti AH; Jarolim P; Lorenzo F; Miraglia del Giudice E; Iolascon A; Gallanello R
    J Biol Chem; 1993 Oct; 268(30):22656-62. PubMed ID: 8226774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.