BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20139158)

  • 1. A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency.
    Kim MJ; Ciani S; Schachtman DP
    Mol Plant; 2010 Mar; 3(2):420-7. PubMed ID: 20139158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions.
    Kim MJ; Ruzicka D; Shin R; Schachtman DP
    Mol Plant; 2012 Sep; 5(5):1042-57. PubMed ID: 22406475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants.
    Caballero F; Botella MA; Rubio L; Fernández JA; Martínez V; Rubio F
    Plant Cell Physiol; 2012 Dec; 53(12):2047-59. PubMed ID: 23054389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP
    J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions.
    Nieves-Cordones M; Alemán F; Martínez V; Rubio F
    Mol Plant; 2010 Mar; 3(2):326-33. PubMed ID: 20028724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions.
    Pyo YJ; Gierth M; Schroeder JI; Cho MH
    Plant Physiol; 2010 Jun; 153(2):863-75. PubMed ID: 20413648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9.
    Lara A; Ródenas R; Andrés Z; Martínez V; Quintero FJ; Nieves-Cordones M; Botella MA; Rubio F
    J Exp Bot; 2020 Aug; 71(16):5053-5060. PubMed ID: 32484219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis.
    Coskun D; Britto DT; Li M; Oh S; Kronzucker HJ
    Plant Physiol; 2013 May; 162(1):496-511. PubMed ID: 23553635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance.
    Llorente F; López-Cobollo RM; Catalá R; Martínez-Zapater JM; Salinas J
    Plant J; 2002 Oct; 32(1):13-24. PubMed ID: 12366797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.
    Rubio F; Nieves-Cordones M; Alemán F; Martínez V
    Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root K(+) acquisition in plants: the Arabidopsis thaliana model.
    Alemán F; Nieves-Cordones M; Martínez V; Rubio F
    Plant Cell Physiol; 2011 Sep; 52(9):1603-12. PubMed ID: 21771865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake.
    Rubio F; Alemán F; Nieves-Cordones M; Martínez V
    Physiol Plant; 2010 Jun; 139(2):220-8. PubMed ID: 20088908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis.
    Jung JY; Shin R; Schachtman DP
    Plant Cell; 2009 Feb; 21(2):607-21. PubMed ID: 19190240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of transcription factors regulating Arabidopsis HAK5.
    Hong JP; Takeshi Y; Kondou Y; Schachtman DP; Matsui M; Shin R
    Plant Cell Physiol; 2013 Sep; 54(9):1478-90. PubMed ID: 23825216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency.
    Shin R; Berg RH; Schachtman DP
    Plant Cell Physiol; 2005 Aug; 46(8):1350-7. PubMed ID: 15946982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.
    Ahn SJ; Shin R; Schachtman DP
    Plant Physiol; 2004 Mar; 134(3):1135-45. PubMed ID: 14988478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties.
    Oliferuk S; Ródenas R; Pérez A; Martinez V; Rubio F; Santa María GE
    Plant Signal Behav; 2017 Oct; 12(10):e1366396. PubMed ID: 28816584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis.
    Nam YJ; Tran LS; Kojima M; Sakakibara H; Nishiyama R; Shin R
    PLoS One; 2012; 7(10):e47797. PubMed ID: 23112848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cotton High-Affinity K+ Transporter, GhHAK5a, Is Essential for Shoot Regulation of K+ Uptake in Root under Potassium Deficiency.
    Wang Y; Wang Y; Li B; Xiong C; Eneji AE; Zhang M; Li F; Tian X; Li Z
    Plant Cell Physiol; 2019 Apr; 60(4):888-899. PubMed ID: 30649443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.