These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20139189)

  • 21. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.
    Yang YJ; Singh RP; Lan X; Zhang CS; Sheng DH; Li YQ
    Microb Cell Fact; 2019 Jul; 18(1):123. PubMed ID: 31291955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The
    Rajagopalan R; Kroos L
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264995
    [No Abstract]   [Full Text] [Related]  

  • 23. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.
    Bullock HA; Shen H; Boynton TO; Shimkets LJ
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507089
    [No Abstract]   [Full Text] [Related]  

  • 24. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain.
    Xiao Y; Wall D
    J Bacteriol; 2014 Mar; 196(6):1174-83. PubMed ID: 24391051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus.
    Müller S; Strack SN; Hoefler BC; Straight PD; Kearns DB; Kirby JR
    Appl Environ Microbiol; 2014 Sep; 80(18):5603-10. PubMed ID: 25002419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphosphate Plays a Significant Role in the Maturation of Spores in Myxococcus xanthus.
    Harita D; Matsukawa H; Kimura Y
    Curr Microbiol; 2024 Jul; 81(8):248. PubMed ID: 38951187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two PAAR Proteins with Different C-Terminal Extended Domains Have Distinct Ecological Functions in Myxococcus xanthus.
    Liu Y; Wang J; Zhang Z; Wang F; Gong Y; Sheng DH; Li YZ
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae.
    McNally D; Fares MA
    BMC Evol Biol; 2007 May; 7():81. PubMed ID: 17519003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Dual-Functional Orphan Response Regulator Negatively Controls the Differential Transcription of Duplicate
    Zhuo L; Wan TY; Pan Z; Wang JN; Sheng DH; Li YZ
    mSystems; 2022 Apr; 7(2):e0105621. PubMed ID: 35353010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of Solitary Predation by Myxococcus xanthus on Escherichia coli Observed at the Single-Cell Level.
    Zhang W; Wang Y; Lu H; Liu Q; Wang C; Hu W; Zhao K
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orphan Hybrid Histidine Protein Kinase SinK Acts as a Signal Integrator To Fine-Tune Multicellular Behavior in
    Glaser MM; Higgs PI
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30617244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone.
    Barreiro C; González-Lavado E; Brand S; Tauch A; Martín JF
    J Bacteriol; 2005 Feb; 187(3):884-9. PubMed ID: 15659666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predataxis behavior in Myxococcus xanthus.
    Berleman JE; Scott J; Chumley T; Kirby JR
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17127-32. PubMed ID: 18952843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V).
    Weissenbach J; Ilhan J; Bogumil D; Hülter N; Stucken K; Dagan T
    Genome Biol Evol; 2017 Jan; 9(1):241-252. PubMed ID: 28082600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus.
    García-Moreno D; Polanco MC; Navarro-Avilés G; Murillo FJ; Padmanabhan S; Elías-Arnanz M
    J Bacteriol; 2009 May; 191(9):3108-19. PubMed ID: 19251845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genes required for both gliding motility and development in Myxococcus xanthus.
    MacNeil SD; Mouzeyan A; Hartzell PL
    Mol Microbiol; 1994 Nov; 14(4):785-95. PubMed ID: 7891564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive evolution of an sRNA that controls Myxococcus development.
    Yu YT; Yuan X; Velicer GJ
    Science; 2010 May; 328(5981):993. PubMed ID: 20489016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The clpB gene is involved in the stress response of Myxococcus xanthus during vegetative growth and development.
    Pan H; Luan J; He X; Lux R; Shi W
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2336-2343. PubMed ID: 22790397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach.
    Dahl JL; Tengra FK; Dutton D; Yan J; Andacht TM; Coyne L; Windell V; Garza AG
    J Bacteriol; 2007 Apr; 189(8):3187-97. PubMed ID: 17293425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development.
    Downard J; Ramaswamy SV; Kil KS
    J Bacteriol; 1993 Dec; 175(24):7762-70. PubMed ID: 8253664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.