These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. Wu Z; Chen H; Dong Y; Mao H; Sun J; Chen S; Craig VS; Hu J J Colloid Interface Sci; 2008 Dec; 328(1):10-4. PubMed ID: 18829043 [TBL] [Abstract][Full Text] [Related]
5. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals. Liu Y; Zhang Z; Wells MC; Beebe TP Langmuir; 2005 Sep; 21(19):8883-91. PubMed ID: 16142974 [TBL] [Abstract][Full Text] [Related]
6. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes. Yang CW; Lu YH; Hwang IS J Phys Condens Matter; 2013 May; 25(18):184010. PubMed ID: 23598995 [TBL] [Abstract][Full Text] [Related]
7. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite. Paredes JI; Martínez-Alonso A; Tascón JM Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic stability of interfacial gaseous states. Zhang XH; Maeda N; Hu J J Phys Chem B; 2008 Nov; 112(44):13671-5. PubMed ID: 18842008 [TBL] [Abstract][Full Text] [Related]
9. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles. Tarábková H; Bastl Z; Janda P Langmuir; 2014 Dec; 30(48):14522-31. PubMed ID: 25405849 [TBL] [Abstract][Full Text] [Related]
10. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface. Zhang XH; Zhang X; Sun J; Zhang Z; Li G; Fang H; Xiao X; Zeng X; Hu J Langmuir; 2007 Feb; 23(4):1778-83. PubMed ID: 17279656 [TBL] [Abstract][Full Text] [Related]
11. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study. Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519 [TBL] [Abstract][Full Text] [Related]
12. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles. Tarábková H; Janda P J Phys Condens Matter; 2013 May; 25(18):184001. PubMed ID: 23598572 [TBL] [Abstract][Full Text] [Related]
13. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Huc V; Bendiab N; Rosman N; Ebbesen T; Delacour C; Bouchiat V Nanotechnology; 2008 Nov; 19(45):455601. PubMed ID: 21832778 [TBL] [Abstract][Full Text] [Related]
14. Removal of induced nanobubbles from water/graphite interfaces by partial degassing. Zhang XH; Li G; Maeda N; Hu J Langmuir; 2006 Oct; 22(22):9238-43. PubMed ID: 17042536 [TBL] [Abstract][Full Text] [Related]
15. [Microwave-assisted route to fibre-like ternary NaFeS2 nanoparticles and its XPS]. Wu HQ; Shao MW; Gu JS; Wei XW Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jun; 25(6):949-51. PubMed ID: 16201380 [TBL] [Abstract][Full Text] [Related]
16. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073 [TBL] [Abstract][Full Text] [Related]