BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20139709)

  • 1. KCNQ1/KCNE1 assembly, co-translation not required.
    Vanoye CG; Welch RC; Tian C; Sanders CR; George AL
    Channels (Austin); 2010; 4(2):108-14. PubMed ID: 20139709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
    Choi SH; Shin TJ; Lee BH; Chu DH; Choe H; Pyo MK; Hwang SH; Kim BR; Lee SM; Lee JH; Kim DH; Kim HC; Rhim HW; Nah SY
    Eur J Pharmacol; 2010 Jul; 637(1-3):138-47. PubMed ID: 20399767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The
    Wang Y; Eldstrom J; Fedida D
    Mol Pharmacol; 2020 Feb; 97(2):132-144. PubMed ID: 31722973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of functional properties of KCNQ1 channel by association of KCNE1 and KCNE2.
    Toyoda F; Ueyama H; Ding WG; Matsuura H
    Biochem Biophys Res Commun; 2006 Jun; 344(3):814-20. PubMed ID: 16631607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
    Kurokawa J; Bankston JR; Kaihara A; Chen L; Furukawa T; Kass RS
    Channels (Austin); 2009; 3(1):16-24. PubMed ID: 19077539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNE4 can co-associate with the I(Ks) (KCNQ1-KCNE1) channel complex.
    Manderfield LJ; George AL
    FEBS J; 2008 Mar; 275(6):1336-49. PubMed ID: 18279388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
    Rocheleau JM; Kobertz WR
    J Gen Physiol; 2008 Jan; 131(1):59-68. PubMed ID: 18079560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of slow activation gating in the cardiac I Ks channel complex.
    Strutz-Seebohm N; Pusch M; Wolf S; Stoll R; Tapken D; Gerwert K; Attali B; Seebohm G
    Cell Physiol Biochem; 2011; 27(5):443-52. PubMed ID: 21691061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of disease pathogenesis in long QT syndrome type 5.
    Harmer SC; Wilson AJ; Aldridge R; Tinker A
    Am J Physiol Cell Physiol; 2010 Feb; 298(2):C263-73. PubMed ID: 19907016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.
    Kuenze G; Vanoye CG; Desai RR; Adusumilli S; Brewer KR; Woods H; McDonald EF; Sanders CR; George AL; Meiler J
    Elife; 2020 Oct; 9():. PubMed ID: 33095155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
    Yu H; Lin Z; Mattmann ME; Zou B; Terrenoire C; Zhang H; Wu M; McManus OB; Kass RS; Lindsley CW; Hopkins CR; Li M
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8732-7. PubMed ID: 23650380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels.
    Gage SD; Kobertz WR
    J Gen Physiol; 2004 Dec; 124(6):759-71. PubMed ID: 15572349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The KCNE1 beta-subunit exerts a transient effect on the KCNQ1 K+ channel.
    Poulsen AN; Klaerke DA
    Biochem Biophys Res Commun; 2007 Nov; 363(1):133-9. PubMed ID: 17845799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression.
    Wu M; Obara Y; Ohshima S; Nagasawa Y; Ishii K
    Biochem Biophys Res Commun; 2017 Nov; 493(1):409-415. PubMed ID: 28882596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels.
    Seebohm G; Sanguinetti MC; Pusch M
    J Physiol; 2003 Oct; 552(Pt 2):369-78. PubMed ID: 14561821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels.
    Pusch M; Bertorello L; Conti F
    Biophys J; 2000 Jan; 78(1):211-26. PubMed ID: 10620287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNE2 is colocalized with KCNQ1 and KCNE1 in cardiac myocytes and may function as a negative modulator of I(Ks) current amplitude in the heart.
    Wu DM; Jiang M; Zhang M; Liu XS; Korolkova YV; Tseng GN
    Heart Rhythm; 2006 Dec; 3(12):1469-80. PubMed ID: 17161791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps.
    Barro-Soria R; Rebolledo S; Liin SI; Perez ME; Sampson KJ; Kass RS; Larsson HP
    Nat Commun; 2014 Apr; 5():3750. PubMed ID: 24769622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the
    Jiang M; Wang Y; Tseng GN
    Circ Arrhythm Electrophysiol; 2017 Jun; 10(6):. PubMed ID: 28611207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.