BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20140099)

  • 21. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lapsing during sleep deprivation is associated with distributed changes in brain activation.
    Chee MW; Tan JC; Zheng H; Parimal S; Weissman DH; Zagorodnov V; Dinges DF
    J Neurosci; 2008 May; 28(21):5519-28. PubMed ID: 18495886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.
    Jackson ML; Hughes ME; Croft RJ; Howard ME; Crewther D; Kennedy GA; Owens K; Pierce RJ; O'Donoghue FJ; Johnston P
    Brain Imaging Behav; 2011 Jun; 5(2):97-108. PubMed ID: 21271311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep deprivation and interference by emotional distracters.
    Chuah LY; Dolcos F; Chen AK; Zheng H; Parimal S; Chee MW
    Sleep; 2010 Oct; 33(10):1305-13. PubMed ID: 21061852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinotopy and attention to the face and house images in the human visual cortex.
    Wang B; Yan T; Ohno S; Kanazawa S; Wu J
    Exp Brain Res; 2016 Jun; 234(6):1623-35. PubMed ID: 26838358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance.
    De Havas JA; Parimal S; Soon CS; Chee MW
    Neuroimage; 2012 Jan; 59(2):1745-51. PubMed ID: 21872664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.
    Maximo JO; Neupane A; Saxena N; Joseph RM; Kana RK
    Brain Connect; 2016 May; 6(4):335-44. PubMed ID: 26729050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human fronto-parietal response scattering subserves vigilance at night.
    Gaggioni G; Ly JQM; Chellappa SL; Coppieters 't Wallant D; Rosanova M; Sarasso S; Luxen A; Salmon E; Middleton B; Massimini M; Schmidt C; Casali A; Phillips C; Vandewalle G
    Neuroimage; 2018 Jul; 175():354-364. PubMed ID: 29604455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of early and late night partial sleep deprivation on automatic and selective attention: An ERP study.
    Zerouali Y; Jemel B; Godbout R
    Brain Res; 2010 Jan; 1308():87-99. PubMed ID: 19799884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task.
    Coull JT; Frackowiak RS; Frith CD
    Neuropsychologia; 1998 Dec; 36(12):1325-34. PubMed ID: 9863686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. fMRI neurofeedback of higher visual areas and perceptual biases.
    Habes I; Rushton S; Johnston SJ; Sokunbi MO; Barawi K; Brosnan M; Daly T; Ihssen N; Linden DE
    Neuropsychologia; 2016 May; 85():208-15. PubMed ID: 27020139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frontal and parietal activity after sleep deprivation is dependent on task difficulty and can be predicted by the fMRI response after normal sleep.
    Lythe KE; Williams SC; Anderson C; Libri V; Mehta MA
    Behav Brain Res; 2012 Jul; 233(1):62-70. PubMed ID: 22565029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep deprivation-induced reduction in cortical functional response to serial subtraction.
    Drummond SP; Brown GG; Stricker JL; Buxton RB; Wong EC; Gillin JC
    Neuroreport; 1999 Dec; 10(18):3745-8. PubMed ID: 10716202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.
    Heinen K; Feredoes E; Ruff CC; Driver J
    Neuropsychologia; 2017 May; 99():81-91. PubMed ID: 28254653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased cerebral response during a divided attention task following sleep deprivation.
    Drummond SP; Gillin JC; Brown GG
    J Sleep Res; 2001 Jun; 10(2):85-92. PubMed ID: 11422722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention.
    Mander BA; Reid KJ; Davuluri VK; Small DM; Parrish TB; Mesulam MM; Zee PC; Gitelman DR
    Brain Res; 2008 Jun; 1217():148-56. PubMed ID: 18511023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention.
    Gillebert CR; Mantini D; Thijs V; Sunaert S; Dupont P; Vandenberghe R
    Brain; 2011 Jun; 134(Pt 6):1694-709. PubMed ID: 21576110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible adjustment of the effective connectivity between the fronto-parietal and visual regions supports cognitive flexibility.
    Qiao L; Xu M; Luo X; Zhang L; Li H; Chen A
    Neuroimage; 2020 Oct; 220():117158. PubMed ID: 32659352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unseen fearful faces promote amygdala guidance of attention.
    Troiani V; Price ET; Schultz RT
    Soc Cogn Affect Neurosci; 2014 Feb; 9(2):133-40. PubMed ID: 23051897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.