These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 20140520)
1. Bioengineering the skin-implant interface: the use of regenerative therapies in implanted devices. Peramo A; Marcelo CL Ann Biomed Eng; 2010 Jun; 38(6):2013-31. PubMed ID: 20140520 [TBL] [Abstract][Full Text] [Related]
2. Bioengineering skin using mechanisms of regeneration and repair. Metcalfe AD; Ferguson MW Biomaterials; 2007 Dec; 28(34):5100-13. PubMed ID: 17688942 [TBL] [Abstract][Full Text] [Related]
4. Implementing tissue engineering and regenerative medicine solutions in medical implants. Ye D; Peramo A Br Med Bull; 2014; 109():3-18. PubMed ID: 24357734 [TBL] [Abstract][Full Text] [Related]
5. Drug/device combinations for local drug therapies and infection prophylaxis. Wu P; Grainger DW Biomaterials; 2006 Apr; 27(11):2450-67. PubMed ID: 16337266 [TBL] [Abstract][Full Text] [Related]
6. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. Thomas KA; Kay JF; Cook SD; Jarcho M J Biomed Mater Res; 1987 Dec; 21(12):1395-414. PubMed ID: 3429474 [TBL] [Abstract][Full Text] [Related]
7. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone. Osseo-coalescence versus osseo-integration. Daculsi G; LeGeros RZ; Deudon C Scanning Microsc; 1990 Jun; 4(2):309-14. PubMed ID: 2402606 [TBL] [Abstract][Full Text] [Related]
8. Applications and failure modes of percutaneous devices: a review. von Recum AF J Biomed Mater Res; 1984 Apr; 18(4):323-36. PubMed ID: 6234317 [TBL] [Abstract][Full Text] [Related]
9. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Green RA; Lovell NH; Wallace GG; Poole-Warren LA Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423 [TBL] [Abstract][Full Text] [Related]
10. A synthetic bioactive resorbable graft for predictable implant reconstruction: part one. Valen M; Ganz SD J Oral Implantol; 2002; 28(4):167-77. PubMed ID: 12498463 [TBL] [Abstract][Full Text] [Related]
13. Extracellular matrix biomaterials for soft tissue repair. Cornwell KG; Landsman A; James KS Clin Podiatr Med Surg; 2009 Oct; 26(4):507-23. PubMed ID: 19778685 [TBL] [Abstract][Full Text] [Related]
14. Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model. Conner KA; Sabatini R; Mealey BL; Takacs VJ; Mills MP; Cochran DL J Periodontol; 2003 May; 74(5):658-68. PubMed ID: 12816298 [TBL] [Abstract][Full Text] [Related]
15. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Dieckmann C; Renner R; Milkova L; Simon JC Exp Dermatol; 2010 Aug; 19(8):697-706. PubMed ID: 20545761 [TBL] [Abstract][Full Text] [Related]
16. Soybean-based biomaterials: preparation, properties and tissue regeneration potential. Santin M; Ambrosio L Expert Rev Med Devices; 2008 May; 5(3):349-58. PubMed ID: 18452385 [TBL] [Abstract][Full Text] [Related]
17. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. Pendegrass CJ; Goodship AE; Blunn GW Biomaterials; 2006 Aug; 27(23):4183-91. PubMed ID: 16618500 [TBL] [Abstract][Full Text] [Related]
18. A computational model for stress reduction at the skin-implant interface of osseointegrated prostheses. Yerneni S; Dhaher Y; Kuiken TA J Biomed Mater Res A; 2012 Apr; 100(4):911-7. PubMed ID: 22275149 [TBL] [Abstract][Full Text] [Related]