BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20141116)

  • 1. Conformations of some large-ring cyclodextrins derived from conformational search with molecular dynamics simulations and principal component analysis.
    Ivanov PM
    J Phys Chem B; 2010 Mar; 114(8):2650-9. PubMed ID: 20141116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies on the conformations of some large-ring cyclodextrins (CDn, n = 20, 21, 22, 23).
    Ivanov PM
    Chirality; 2011 Sep; 23(8):628-37. PubMed ID: 21769947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions.
    Gotsev MG; Ivanov PM
    J Phys Chem B; 2009 Apr; 113(17):5752-9. PubMed ID: 19344106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of the conformational dynamics and energetics of some large-ring cyclodextrins (CDn, n = 24, 25, 26, 27, 28, 29).
    Gotsev MG; Ivanov PM; Jaime C
    Chirality; 2007 Mar; 19(3):203-13. PubMed ID: 17226747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study on the intramolecular self-organization of the macrorings of some 'giant' cyclodextrins (CD(n), n = 40, 70, 85, 100).
    Ivanov PM; Atanassov EJ; Jaime C
    Org Biomol Chem; 2015 Feb; 13(6):1680-9. PubMed ID: 25465648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Structure of Large-Ring Cyclodextrins through Molecular Dynamics Simulations in Solution.
    Ivanov PM; Jaime C
    J Phys Chem B; 2004 May; 108(20):6261-74. PubMed ID: 18950110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
    Skjaerven L; Martinez A; Reuter N
    Proteins; 2011 Jan; 79(1):232-43. PubMed ID: 21058295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the characterization of host-guest complexes: surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant.
    Piñeiro A; Banquy X; Pérez-Casas S; Tovar E; García A; Villa A; Amigo A; Mark AE; Costas M
    J Phys Chem B; 2007 May; 111(17):4383-92. PubMed ID: 17428087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations.
    Khuntawee W; Rungrotmongkol T; Wolschann P; Pongsawasdi P; Kungwan N; Okumura H; Hannongbua S
    Carbohydr Polym; 2016 May; 141():99-105. PubMed ID: 26877001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the inclusion of cholesterol into cyclodextrins.
    Yu Y; Chipot C; Cai W; Shao X
    J Phys Chem B; 2006 Mar; 110(12):6372-8. PubMed ID: 16553456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF; Grubmüller H
    J Phys Chem B; 2006 Nov; 110(45):22842-52. PubMed ID: 17092036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How many atoms are required to characterize accurately trajectory fluctuations of a protein?
    Cukier RI
    J Chem Phys; 2010 Jun; 132(24):245101. PubMed ID: 20590215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structures of the cucumber mosaic virus and tomato aspermy virus coat proteins explored with molecular dynamics simulations.
    Gellért A; Balázs E
    J Mol Graph Model; 2010 Feb; 28(6):569-76. PubMed ID: 20056465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.
    Oblinsky DG; Vanschouwen BM; Gordon HL; Rothstein SM
    J Chem Phys; 2009 Dec; 131(22):225102. PubMed ID: 20001084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose orientation and dynamics in alpha-, beta-, and gamma-cyclodextrins.
    Naidoo KJ; Gamieldien MR; Chen JY; Widmalm G; Maliniak A
    J Phys Chem B; 2008 Nov; 112(47):15151-7. PubMed ID: 18975890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective Langevin dynamics of conformational motions in proteins.
    Lange OF; Grubmüller H
    J Chem Phys; 2006 Jun; 124(21):214903. PubMed ID: 16774438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the structural and dynamic properties of human N-terminal domain of apolipoprotein E by molecular dynamics simulations.
    Ortmans I; Prévost M
    J Phys Chem B; 2008 Jul; 112(29):8730-6. PubMed ID: 18582019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.