These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 20141127)

  • 1. Transformation of stable glasses into supercooled liquids: growth fronts and anomalously fast liquid diffusion.
    Swallen SF; Windsor K; McMahon RJ; Ediger MD; Mates TE
    J Phys Chem B; 2010 Mar; 114(8):2635-43. PubMed ID: 20141127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable glass transformation to supercooled liquid via surface-initiated growth front.
    Swallen SF; Traynor K; McMahon RJ; Ediger MD; Mates TE
    Phys Rev Lett; 2009 Feb; 102(6):065503. PubMed ID: 19257602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable glasses of indomethacin and α,α,β-tris-naphthylbenzene transform into ordinary supercooled liquids.
    Sepúlveda A; Swallen SF; Kopff LA; McMahon RJ; Ediger MD
    J Chem Phys; 2012 Nov; 137(20):204508. PubMed ID: 23206020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry.
    Kearns KL; Whitaker KR; Ediger MD; Huth H; Schick C
    J Chem Phys; 2010 Jul; 133(1):014702. PubMed ID: 20614979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular view of the isothermal transformation of a stable glass to a liquid.
    Swallen SF; Kearns KL; Satija S; Traynor K; McMahon RJ; Ediger MD
    J Chem Phys; 2008 Jun; 128(21):214514. PubMed ID: 18537440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the properties of stable organic glasses using kinetic facilitation.
    Sepúlveda A; Swallen SF; Ediger MD
    J Chem Phys; 2013 Mar; 138(12):12A517. PubMed ID: 23556768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of substrate temperature on the transformation front velocities that determine thermal stability of vapor-deposited glasses.
    Dalal SS; Ediger MD
    J Phys Chem B; 2015 Mar; 119(9):3875-82. PubMed ID: 25664997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusion of supercooled tris-naphthylbenzene.
    Swallen SF; Traynor K; McMahon RJ; Ediger MD; Mates TE
    J Phys Chem B; 2009 Apr; 113(14):4600-8. PubMed ID: 19260730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of substrate temperature on the stability of glasses prepared by vapor deposition.
    Kearns KL; Swallen SF; Ediger MD; Wu T; Yu L
    J Chem Phys; 2007 Oct; 127(15):154702. PubMed ID: 17949186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition.
    Kearns KL; Swallen SF; Ediger MD; Wu T; Sun Y; Yu L
    J Phys Chem B; 2008 Apr; 112(16):4934-42. PubMed ID: 18386872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses.
    Dawson KJ; Zhu L; Yu L; Ediger MD
    J Phys Chem B; 2011 Jan; 115(3):455-63. PubMed ID: 21166431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers.
    Dawson K; Kopff LA; Zhu L; McMahon RJ; Yu L; Richert R; Ediger MD
    J Chem Phys; 2012 Mar; 136(9):094505. PubMed ID: 22401450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor-deposited α,α,β-tris-naphthylbenzene glasses with low heat capacity and high kinetic stability.
    Whitaker KR; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2012 Oct; 137(15):154502. PubMed ID: 23083176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl.
    Whitaker KR; Tylinski M; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2015 Aug; 143(8):084511. PubMed ID: 26328860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy.
    Rodríguez-Tinoco C; Gonzalez-Silveira M; Ràfols-Ribé J; Lopeandía AF; Rodríguez-Viejo J
    Phys Chem Chem Phys; 2015 Dec; 17(46):31195-201. PubMed ID: 26548465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of vapor-deposited stable glasses of an organic semiconductor.
    Walters DM; Richert R; Ediger MD
    J Chem Phys; 2015 Apr; 142(13):134504. PubMed ID: 25854250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stable indomethacin glasses resist uptake of water vapor.
    Dawson KJ; Kearns KL; Ediger MD; Sacchetti MJ; Zografi GD
    J Phys Chem B; 2009 Feb; 113(8):2422-7. PubMed ID: 19183039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of fragility in the formation of highly stable organic glasses.
    Sepúlveda A; Tylinski M; Guiseppi-Elie A; Richert R; Ediger MD
    Phys Rev Lett; 2014 Jul; 113(4):045901. PubMed ID: 25105633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip-nanocalorimetry.
    Ahrenberg M; Chua YZ; Whitaker KR; Huth H; Ediger MD; Schick C
    J Chem Phys; 2013 Jan; 138(2):024501. PubMed ID: 23320698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.