These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 20141417)
1. Origin and genetic evolution of the vertebrate skeleton. Wada H Zoolog Sci; 2010 Feb; 27(2):119-23. PubMed ID: 20141417 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of amphioxus oral cirri and its skeletal rods: implications for the origin of the vertebrate skeleton. Kaneto S; Wada H J Exp Zool B Mol Dev Evol; 2011 Sep; 316(6):409-17. PubMed ID: 21455946 [TBL] [Abstract][Full Text] [Related]
3. Domain shuffling and the evolution of vertebrates. Kawashima T; Kawashima S; Tanaka C; Murai M; Yoneda M; Putnam NH; Rokhsar DS; Kanehisa M; Satoh N; Wada H Genome Res; 2009 Aug; 19(8):1393-403. PubMed ID: 19443856 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. Kawasaki K; Weiss KM J Exp Zool B Mol Dev Evol; 2006 May; 306(3):295-316. PubMed ID: 16358265 [TBL] [Abstract][Full Text] [Related]
5. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. Bassham S; Cañestro C; Postlethwait JH BMC Biol; 2008 Aug; 6():35. PubMed ID: 18721460 [TBL] [Abstract][Full Text] [Related]
6. Gene duplication and the evolution of vertebrate skeletal mineralization. Kawasaki K; Buchanan AV; Weiss KM Cells Tissues Organs; 2007; 186(1):7-24. PubMed ID: 17627116 [TBL] [Abstract][Full Text] [Related]
7. Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. Ohtani K; Yao T; Kobayashi M; Kusakabe R; Kuratani S; Wada H J Exp Zool B Mol Dev Evol; 2008 Nov; 310(7):596-607. PubMed ID: 18702077 [TBL] [Abstract][Full Text] [Related]
8. Molecular evolution of fibrillar collagen in chordates, with implications for the evolution of vertebrate skeletons and chordate phylogeny. Wada H; Okuyama M; Satoh N; Zhang S Evol Dev; 2006; 8(4):370-7. PubMed ID: 16805901 [TBL] [Abstract][Full Text] [Related]
9. SoxE, Type II collagen, and evolution of the chondrogenic neural crest. McCauley DW Zoolog Sci; 2008 Oct; 25(10):982-9. PubMed ID: 19267634 [TBL] [Abstract][Full Text] [Related]
10. A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Bertrand S; Fuentealba J; Aze A; Hudson C; Yasuo H; Torrejon M; Escriva H; Marcellini S Proc Biol Sci; 2013 Apr; 280(1757):20122963. PubMed ID: 23446527 [TBL] [Abstract][Full Text] [Related]
11. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Donoghue PC; Sansom IJ; Downs JP J Exp Zool B Mol Dev Evol; 2006 May; 306(3):278-94. PubMed ID: 16555304 [TBL] [Abstract][Full Text] [Related]
12. Development and evolution of chordate cartilage. Rychel AL; Swalla BJ J Exp Zool B Mol Dev Evol; 2007 May; 308(3):325-35. PubMed ID: 17358002 [TBL] [Abstract][Full Text] [Related]
13. Evolution of dental tissue mineralization: an analysis of the jawed vertebrate SPARC and SPARC-L families. Enault S; Muñoz D; Simion P; Ventéo S; Sire JY; Marcellini S; Debiais-Thibaud M BMC Evol Biol; 2018 Aug; 18(1):127. PubMed ID: 30165817 [TBL] [Abstract][Full Text] [Related]
14. No bones about it: an enigmatic Devonian fossil reveals a new skeletal framework--a potential role of loss of gene regulation. Johanson Z; Kearsley A; den Blaauwen J; Newman M; Smith MM Semin Cell Dev Biol; 2010 Jun; 21(4):414-23. PubMed ID: 19896547 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Jandzik D; Garnett AT; Square TA; Cattell MV; Yu JK; Medeiros DM Nature; 2015 Feb; 518(7540):534-7. PubMed ID: 25487155 [TBL] [Abstract][Full Text] [Related]
16. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head. Jandzik D; Hawkins MB; Cattell MV; Cerny R; Square TA; Medeiros DM Development; 2014 Feb; 141(3):629-38. PubMed ID: 24449839 [TBL] [Abstract][Full Text] [Related]
17. Gene duplications and the origins of vertebrate development. Holland PW; Garcia-Fernàndez J; Williams NA; Sidow A Dev Suppl; 1994; ():125-33. PubMed ID: 7579513 [TBL] [Abstract][Full Text] [Related]
18. Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Holland LZ; Short S Brain Behav Evol; 2008; 72(2):91-105. PubMed ID: 18836256 [TBL] [Abstract][Full Text] [Related]
19. Evolution of a core gene network for skeletogenesis in chordates. Hecht J; Stricker S; Wiecha U; Stiege A; Panopoulou G; Podsiadlowski L; Poustka AJ; Dieterich C; Ehrich S; Suvorova J; Mundlos S; Seitz V PLoS Genet; 2008 Mar; 4(3):e1000025. PubMed ID: 18369444 [TBL] [Abstract][Full Text] [Related]
20. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. Square T; Jandzik D; Cattell M; Coe A; Doherty J; Medeiros DM Dev Biol; 2015 Jan; 397(2):293-304. PubMed ID: 25446275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]