BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 20141476)

  • 1. Reward-modulated Hebbian learning of decision making.
    Pfeiffer M; Nessler B; Douglas RJ; Maass W
    Neural Comput; 2010 Jun; 22(6):1399-444. PubMed ID: 20141476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning spike-based population codes by reward and population feedback.
    Friedrich J; Urbanczik R; Senn W
    Neural Comput; 2010 Jul; 22(7):1698-717. PubMed ID: 20235820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting.
    Ponulak F; Kasiński A
    Neural Comput; 2010 Feb; 22(2):467-510. PubMed ID: 19842989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical mechanics of reward-modulated learning in decision-making networks.
    Katahira K; Okanoya K; Okada M
    Neural Comput; 2012 May; 24(5):1230-70. PubMed ID: 22295982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hebbian learning in linear-nonlinear networks with tuning curves leads to near-optimal, multi-alternative decision making.
    McMillen T; Simen P; Behseta S
    Neural Netw; 2011 Jun; 24(5):417-26. PubMed ID: 21377327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):220-8. PubMed ID: 19386469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the classification capability of sign-constrained perceptrons.
    Legenstein R; Maass W
    Neural Comput; 2008 Jan; 20(1):288-309. PubMed ID: 18045010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The computational neurobiology of learning and reward.
    Daw ND; Doya K
    Curr Opin Neurobiol; 2006 Apr; 16(2):199-204. PubMed ID: 16563737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational framework for cortical learning.
    Suri RE
    Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hebbian self-organizing integrate-and-fire networks for data clustering.
    Landis F; Ott T; Stoop R
    Neural Comput; 2010 Jan; 22(1):273-88. PubMed ID: 19764879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations.
    Moreno-Bote R; Parga N
    Neural Comput; 2010 Jun; 22(6):1528-72. PubMed ID: 20100073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient continuous-time asymmetric Hopfield networks for memory retrieval.
    Zheng P; Tang W; Zhang J
    Neural Comput; 2010 Jun; 22(6):1597-614. PubMed ID: 20141477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
    Hoerzer GM; Legenstein R; Maass W
    Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-correlations in high-conductance states of a model cortical network.
    Hertz J
    Neural Comput; 2010 Feb; 22(2):427-47. PubMed ID: 19842988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.