BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20141755)

  • 1. Transversal stiffness and Young's modulus of single fibers from rat soleus muscle probed by atomic force microscopy.
    Ogneva IV; Lebedev DV; Shenkman BS
    Biophys J; 2010 Feb; 98(3):418-24. PubMed ID: 20141755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spatial distribution of transverse stiffness of relaxed and activated rat soleus myofibers].
    Ogneva IV; Lebedev DV; Isaev-Ivanov VV; Shenkman BS
    Biofizika; 2008; 53(6):1073-7. PubMed ID: 19137695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of nifedipine on the mechanical properties of sarcolemma and modulation of calcium accumulation dynamics in fibers of the rat soleus muscle under short-term hypogravity conditions].
    Ogneva IV; Altaeva EG
    Biofizika; 2010; 55(5):918-24. PubMed ID: 21033362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.
    Ogneva IV
    J Appl Physiol (1985); 2010 Dec; 109(6):1702-9. PubMed ID: 20829498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy.
    Yoshikawa Y; Yasuike T; Yagi A; Yamada T
    Biochem Biophys Res Commun; 1999 Mar; 256(1):13-9. PubMed ID: 10066415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Contractile properties, transversal stiffness and cytoskeletal protein content in Mongolian gerbils soleus fibers under long-term hindlimb suspension].
    Ponomareva EV; Ogneva IV
    Biofizika; 2012; 57(4):683-9. PubMed ID: 23035536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy.
    Akiyama N; Ohnuki Y; Kunioka Y; Saeki Y; Yamada T
    J Physiol Sci; 2006 Apr; 56(2):145-51. PubMed ID: 16839448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transversal stiffness and beta-actin and alpha-actinin-4 content of the M. soleus fibers in the conditions of a 3-day reloading after 14-day gravitational unloading.
    Ogneva IV
    J Biomed Biotechnol; 2011; 2011():393405. PubMed ID: 21941432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain dependence of the elastic properties of force-producing cross-bridges in rigor skeletal muscle.
    van der Heide U; Ketelaars M; Treijtel BW; de Beer EL; Blangé T
    Biophys J; 1997 Feb; 72(2 Pt 1):814-21. PubMed ID: 9017206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and transverse stiffness of Drosophila myofibrils measured by atomic force microscopy.
    Nyland LR; Maughan DW
    Biophys J; 2000 Mar; 78(3):1490-7. PubMed ID: 10692334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and elasticity measurements of the sarcolemma of fully differentiated skeletal muscle fibres.
    Defranchi E; Bonaccurso E; Tedesco M; Canato M; Pavan E; Raiteri R; Reggiani C
    Microsc Res Tech; 2005 May; 67(1):27-35. PubMed ID: 16025488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation.
    Zhu J; Sabharwal T; Kalyanasundaram A; Guo L; Wang G
    J Biomech; 2009 Sep; 42(13):2143-50. PubMed ID: 19640539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle.
    Palmer ML; Claflin DR; Faulkner JA; Panchangam A
    J Muscle Res Cell Motil; 2011 Aug; 32(1):39-48. PubMed ID: 21710358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency characteristics of elasticity of skeletal muscle fibres kept in relaxed and rigor state.
    De Winkel ME; Blangé T; Treijtel BW
    J Muscle Res Cell Motil; 1994 Apr; 15(2):130-44. PubMed ID: 8051287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution.
    Xu S; Yu LC; Schoenberg M
    Biophys J; 1998 Mar; 74(3):1110-4. PubMed ID: 9512013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.