These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20141755)

  • 1. Transversal stiffness and Young's modulus of single fibers from rat soleus muscle probed by atomic force microscopy.
    Ogneva IV; Lebedev DV; Shenkman BS
    Biophys J; 2010 Feb; 98(3):418-24. PubMed ID: 20141755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spatial distribution of transverse stiffness of relaxed and activated rat soleus myofibers].
    Ogneva IV; Lebedev DV; Isaev-Ivanov VV; Shenkman BS
    Biofizika; 2008; 53(6):1073-7. PubMed ID: 19137695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of nifedipine on the mechanical properties of sarcolemma and modulation of calcium accumulation dynamics in fibers of the rat soleus muscle under short-term hypogravity conditions].
    Ogneva IV; Altaeva EG
    Biofizika; 2010; 55(5):918-24. PubMed ID: 21033362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.
    Ogneva IV
    J Appl Physiol (1985); 2010 Dec; 109(6):1702-9. PubMed ID: 20829498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy.
    Yoshikawa Y; Yasuike T; Yagi A; Yamada T
    Biochem Biophys Res Commun; 1999 Mar; 256(1):13-9. PubMed ID: 10066415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Contractile properties, transversal stiffness and cytoskeletal protein content in Mongolian gerbils soleus fibers under long-term hindlimb suspension].
    Ponomareva EV; Ogneva IV
    Biofizika; 2012; 57(4):683-9. PubMed ID: 23035536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy.
    Akiyama N; Ohnuki Y; Kunioka Y; Saeki Y; Yamada T
    J Physiol Sci; 2006 Apr; 56(2):145-51. PubMed ID: 16839448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transversal stiffness and beta-actin and alpha-actinin-4 content of the M. soleus fibers in the conditions of a 3-day reloading after 14-day gravitational unloading.
    Ogneva IV
    J Biomed Biotechnol; 2011; 2011():393405. PubMed ID: 21941432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain dependence of the elastic properties of force-producing cross-bridges in rigor skeletal muscle.
    van der Heide U; Ketelaars M; Treijtel BW; de Beer EL; Blangé T
    Biophys J; 1997 Feb; 72(2 Pt 1):814-21. PubMed ID: 9017206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and transverse stiffness of Drosophila myofibrils measured by atomic force microscopy.
    Nyland LR; Maughan DW
    Biophys J; 2000 Mar; 78(3):1490-7. PubMed ID: 10692334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and elasticity measurements of the sarcolemma of fully differentiated skeletal muscle fibres.
    Defranchi E; Bonaccurso E; Tedesco M; Canato M; Pavan E; Raiteri R; Reggiani C
    Microsc Res Tech; 2005 May; 67(1):27-35. PubMed ID: 16025488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation.
    Zhu J; Sabharwal T; Kalyanasundaram A; Guo L; Wang G
    J Biomech; 2009 Sep; 42(13):2143-50. PubMed ID: 19640539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle.
    Palmer ML; Claflin DR; Faulkner JA; Panchangam A
    J Muscle Res Cell Motil; 2011 Aug; 32(1):39-48. PubMed ID: 21710358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency characteristics of elasticity of skeletal muscle fibres kept in relaxed and rigor state.
    De Winkel ME; Blangé T; Treijtel BW
    J Muscle Res Cell Motil; 1994 Apr; 15(2):130-44. PubMed ID: 8051287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of N-phenylmaleimide-reacted muscle fibers in magnesium-free rigor solution.
    Xu S; Yu LC; Schoenberg M
    Biophys J; 1998 Mar; 74(3):1110-4. PubMed ID: 9512013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.