BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20141761)

  • 1. Electrostatic solvation energy for two oppositely charged ions in a solvated protein system: salt bridges can stabilize proteins.
    Gong H; Freed KF
    Biophys J; 2010 Feb; 98(3):470-7. PubMed ID: 20141761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect.
    Zhou HX
    Proteins; 2005 Oct; 61(1):69-78. PubMed ID: 16044460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.
    Yigit C; Heyda J; Dzubiella J
    J Chem Phys; 2015 Aug; 143(6):064904. PubMed ID: 26277163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Langevin-Debye model for nonlinear electrostatic screening of solvated ions.
    Gong H; Freed KF
    Phys Rev Lett; 2009 Feb; 102(5):057603. PubMed ID: 19257555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.
    Zhang Q; Beard DA; Schlick T
    J Comput Chem; 2003 Dec; 24(16):2063-74. PubMed ID: 14531059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive adsorption of model charged proteins: the effect of total charge and charge distribution.
    Gong P; Szleifer I
    J Colloid Interface Sci; 2004 Oct; 278(1):81-90. PubMed ID: 15313640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic interactions of a neutral dipolar solute with a fused salt: a new model for solvation in ionic liquids.
    Kobrak MN
    J Phys Chem B; 2007 May; 111(18):4755-62. PubMed ID: 17298088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interactions.
    Adžić N; Podgornik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022715. PubMed ID: 25768539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-specific excluded-volume correlations and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    Phys Rev Lett; 2010 Mar; 104(9):097802. PubMed ID: 20367012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant role of electrostatic interactions for stabilization of protein assemblies.
    Takahashi T
    Adv Biophys; 1997; 34():41-54. PubMed ID: 9204125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dressed counterions: strong electrostatic coupling in the presence of salt.
    Kanduc M; Naji A; Forsman J; Podgornik R
    J Chem Phys; 2010 Mar; 132(12):124701. PubMed ID: 20370139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Like-charged protein-polyelectrolyte complexation driven by charge patches.
    Yigit C; Heyda J; Ballauff M; Dzubiella J
    J Chem Phys; 2015 Aug; 143(6):064905. PubMed ID: 26277164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Intrinsic Radius as a Key Parameter in the Generalized Born Model to Adjust Protein-Protein Electrostatic Interaction.
    Parkin D; Takano M
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized parameters for continuum solvation calculations with carbohydrates.
    Green DF
    J Phys Chem B; 2008 Apr; 112(16):5238-49. PubMed ID: 18386862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.