BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20142036)

  • 1. The switch regulating transcription of the Escherichia coli biotin operon does not require extensive protein-protein interactions.
    Solbiati J; Cronan JE
    Chem Biol; 2010 Jan; 17(1):11-7. PubMed ID: 20142036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered regulation of Escherichia coli biotin biosynthesis in BirA superrepressor mutant strains.
    Chakravartty V; Cronan JE
    J Bacteriol; 2012 Mar; 194(5):1113-26. PubMed ID: 22210766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity.
    Henke SK; Cronan JE
    Mol Microbiol; 2016 Nov; 102(3):417-429. PubMed ID: 27445042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein:protein interactions in control of a transcriptional switch.
    Adikaram PR; Beckett D
    J Mol Biol; 2013 Nov; 425(22):4584-94. PubMed ID: 23896299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic methods to study bifunctional biotin operon repressor.
    Beckett D
    Methods Enzymol; 1998; 295():424-50. PubMed ID: 9750231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved regulatory mechanism in bifunctional biotin protein ligases.
    Wang J; Beckett D
    Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution.
    Wood ZA; Weaver LH; Brown PH; Beckett D; Matthews BW
    J Mol Biol; 2006 Mar; 357(2):509-23. PubMed ID: 16438984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimerization of the Escherichia coli biotin repressor: corepressor function in protein assembly.
    Eisenstein E; Beckett D
    Biochemistry; 1999 Oct; 38(40):13077-84. PubMed ID: 10529178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple disordered loops function in corepressor-induced dimerization of the biotin repressor.
    Kwon K; Streaker ED; Ruparelia S; Beckett D
    J Mol Biol; 2000 Dec; 304(5):821-33. PubMed ID: 11124029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase.
    Chakravartty V; Cronan JE
    J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.
    Wang J; Custer G; Beckett D; Matysiak S
    Biochemistry; 2017 Aug; 56(34):4478-4488. PubMed ID: 28718281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of site-specific DNA binding to protein dimerization in assembly of the biotin repressor-biotin operator complex.
    Streaker ED; Beckett D
    Biochemistry; 1998 Mar; 37(9):3210-9. PubMed ID: 9485476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional versatility of a single protein surface in two protein:protein interactions.
    Adikaram PR; Beckett D
    J Mol Biol; 2012 Jun; 419(3-4):223-33. PubMed ID: 22446587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant.
    Xu Y; Beckett D
    Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator.
    Weaver LH; Kwon K; Beckett D; Matthews BW
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6045-50. PubMed ID: 11353844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding of the Escherichia coli repressor of biotin biosynthesis to the biotin operator sequence.
    Abbott J; Beckett D
    Biochemistry; 1993 Sep; 32(37):9649-56. PubMed ID: 8373769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superrepression through Altered Corepressor-Activated Protein:Protein Interactions.
    He C; Custer G; Wang J; Matysiak S; Beckett D
    Biochemistry; 2018 Feb; 57(7):1119-1129. PubMed ID: 29355305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biotin regulatory system: kinetic control of a transcriptional switch.
    Streaker ED; Beckett D
    Biochemistry; 2006 May; 45(20):6417-25. PubMed ID: 16700552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis.
    Xu Y; Nenortas E; Beckett D
    Biochemistry; 1995 Dec; 34(51):16624-31. PubMed ID: 8527435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of biotinyl-5'-adenylate synthesis catalyzed by the Escherichia coli repressor of biotin biosynthesis and the stability of the enzyme-product complex.
    Xu Y; Beckett D
    Biochemistry; 1994 Jun; 33(23):7354-60. PubMed ID: 8003500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.