BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20142110)

  • 1. Influence of viscoelasticity of protein on the toughness of bone.
    Anup S; Sivakumar SM; Suraishkumar GK
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):260-7. PubMed ID: 20142110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of collagen in determining bone mechanical properties.
    Wang X; Bank RA; TeKoppele JM; Agrawal CM
    J Orthop Res; 2001 Nov; 19(6):1021-6. PubMed ID: 11781000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of yield damage on the viscoelastic properties of cortical bone tissue as measured by dynamic mechanical analysis.
    Yeni YN; Shaffer RR; Baker KC; Dong XN; Grimm MJ; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2007 Sep; 82(3):530-7. PubMed ID: 17295254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of microdamage formation using a mineral-collagen composite model of bone.
    Wang X; Qian C
    J Biomech; 2006; 39(4):595-602. PubMed ID: 16439230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new tool to assess the mechanical properties of bone due to collagen degradation.
    Wynnyckyj C; Omelon S; Savage K; Damani M; Chachra D; Grynpas MD
    Bone; 2009 May; 44(5):840-8. PubMed ID: 19150659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.
    Fritsch A; Hellmich C
    J Theor Biol; 2007 Feb; 244(4):597-620. PubMed ID: 17074362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling fatigue damage evolution in bone.
    Pidaparti RM; Wang QY; Burr DB
    Biomed Mater Eng; 2001; 11(2):69-78. PubMed ID: 11352114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flaw tolerant bulk and surface nanostructures of biological systems.
    Gao H; Ji B; Buehler MJ; Yao H
    Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone.
    Yan J; Daga A; Kumar R; Mecholsky JJ
    J Biomech; 2008; 41(9):1929-36. PubMed ID: 18502430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size effects in the elasticity and viscoelasticity of bone.
    Buechner PM; Lakes RS
    Biomech Model Mechanobiol; 2003 Apr; 1(4):295-301. PubMed ID: 14586697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence that bone density and the orientation and particle size of the mineral phase have on the mechanical properties of bone.
    Wall JC; Chatterji SK; Jeffery JW
    J Bioeng; 1978; 2(6):517-26. PubMed ID: 753842
    [No Abstract]   [Full Text] [Related]  

  • 20. Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity.
    Minary-Jolandan M; Yu MF
    Biomacromolecules; 2009 Sep; 10(9):2565-70. PubMed ID: 19694448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.