These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20142473)

  • 1. Multilocus tetrasomic linkage analysis using hidden Markov chain model.
    Leach LJ; Wang L; Kearsey MJ; Luo Z
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4270-4. PubMed ID: 20142473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing genetic linkage maps under a tetrasomic model.
    Luo ZW; Zhang Z; Leach L; Zhang RM; Bradshaw JE; Kearsey MJ
    Genetics; 2006 Apr; 172(4):2635-45. PubMed ID: 16415363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical basis for genetic linkage analysis in autotetraploid species.
    Luo ZW; Zhang RM; Kearsey MJ
    Proc Natl Acad Sci U S A; 2004 May; 101(18):7040-5. PubMed ID: 15100415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a genetic linkage map in tetraploid species using molecular markers.
    Luo ZW; Hackett CA; Bradshaw JE; McNicol JW; Milbourne D
    Genetics; 2001 Mar; 157(3):1369-85. PubMed ID: 11238421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers.
    Julier B; Flajoulot S; Barre P; Cardinet G; Santoni S; Huguet T; Huyghe C
    BMC Plant Biol; 2003 Dec; 3():9. PubMed ID: 14683527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multivalent pairing model of linkage analysis in autotetraploids.
    Wu SS; Wu R; Ma CX; Zeng ZB; Yang MC; Casella G
    Genetics; 2001 Nov; 159(3):1339-50. PubMed ID: 11729174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linkage Analysis and Haplotype Phasing in Experimental Autopolyploid Populations with High Ploidy Level Using Hidden Markov Models.
    Mollinari M; Garcia AAF
    G3 (Bethesda); 2019 Oct; 9(10):3297-3314. PubMed ID: 31405891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general framework for statistical linkage analysis in multivalent tetraploids.
    Wu R; Ma CX
    Genetics; 2005 Jun; 170(2):899-907. PubMed ID: 15802525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multivalent three-point linkage analysis model of autotetraploids.
    Lu Y; Yang X; Tong C; Li X; Feng S; Wang Z; Pang X; Wang Y; Wang N; Tobias CM; Wu R
    Brief Bioinform; 2013 Jul; 14(4):460-8. PubMed ID: 22988254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tetrasomic inheritance model and likelihood-based method for mapping quantitative trait loci in autotetraploid species.
    Chen J; Leach L; Yang J; Zhang F; Tao Q; Dang Z; Chen Y; Luo Z
    New Phytol; 2021 Apr; 230(1):387-398. PubMed ID: 31913501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data.
    Stift M; Berenos C; Kuperus P; van Tienderen PH
    Genetics; 2008 Aug; 179(4):2113-23. PubMed ID: 18689891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bivalent polyploid model for linkage analysis in outcrossing tetraploids.
    Wu R; Ma CX; Casella G
    Theor Popul Biol; 2002 Sep; 62(2):129-51. PubMed ID: 12167353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling population genetic data in autotetraploid species.
    Luo ZW; Zhang Z; Zhang RM; Pandey M; Gailing O; Hattemer HH; Finkeldey R
    Genetics; 2006 Jan; 172(1):639-46. PubMed ID: 16172506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical aspects of genetic mapping in autopolyploids.
    Ripol MI; Churchill GA; da Silva JA; Sorrells M
    Gene; 1999 Jul; 235(1-2):31-41. PubMed ID: 10415330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species.
    Wu R; Ma CX; Painter I; Zeng ZB
    Theor Popul Biol; 2002 May; 61(3):349-63. PubMed ID: 12027621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for Errors in Low Coverage High-Throughput Sequencing Data When Constructing Genetic Maps Using Biparental Outcrossed Populations.
    Bilton TP; Schofield MR; Black MA; Chagné D; Wilcox PL; Dodds KG
    Genetics; 2018 May; 209(1):65-76. PubMed ID: 29487138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonal contrast based models for quantitative genetic analysis in autotetraploid species.
    Chen J; Zhang F; Wang L; Leach L; Luo Z
    New Phytol; 2018 Oct; 220(1):332-346. PubMed ID: 29987874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases.
    Garcia AA; Kido EA; Meza AN; Souza HM; Pinto LR; Pastina MM; Leite CS; Silva JA; Ulian EC; Figueira A; Souza AP
    Theor Appl Genet; 2006 Jan; 112(2):298-314. PubMed ID: 16307229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome.
    Hong Y; Chen X; Liang X; Liu H; Zhou G; Li S; Wen S; Holbrook CC; Guo B
    BMC Plant Biol; 2010 Jan; 10():17. PubMed ID: 20105299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing large-scale genetic maps using an evolutionary strategy algorithm.
    Mester D; Ronin Y; Minkov D; Nevo E; Korol A
    Genetics; 2003 Dec; 165(4):2269-82. PubMed ID: 14704202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.