These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 20142516)

  • 1. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
    Zhou JJ; Li MS; Qi J; Linsdell P
    J Gen Physiol; 2010 Mar; 135(3):229-45. PubMed ID: 20142516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance.
    Linsdell P; Irving CL; Cowley EA; El Hiani Y
    Cell Mol Life Sci; 2021 Jun; 78(12):5213-5223. PubMed ID: 34023918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monovalent: Divalent Anion Selectivity in the CFTR Channel Pore.
    Linsdell P
    Cell Biochem Biophys; 2021 Dec; 79(4):863-871. PubMed ID: 34031860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore.
    Zhou JJ; Fatehi M; Linsdell P
    Pflugers Arch; 2008 Nov; 457(2):351-60. PubMed ID: 18449561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of CFTR chloride channel function by location of positive charges within the pore.
    El Hiani Y; Linsdell P
    Biophys J; 2012 Oct; 103(8):1719-26. PubMed ID: 23083715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trivalent anions as probes of the CFTR channel pore.
    Linsdell P
    Gen Physiol Biophys; 2024 May; 43(3):197-207. PubMed ID: 38774920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic Tuning of Anion Attraction from the Cytoplasm to the Pore of the CFTR Chloride Channel.
    Linsdell P; Negoda A; Cowley EA; El Hiani Y
    Cell Biochem Biophys; 2020 Mar; 78(1):15-22. PubMed ID: 31893350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore.
    Linsdell P
    Pflugers Arch; 2014 Dec; 466(12):2243-55. PubMed ID: 24671572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line.
    Lansdell KA; Cai Z; Kidd JF; Sheppard DN
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two halves of CFTR form a dual-pore ion channel.
    Yue H; Devidas S; Guggino WB
    J Biol Chem; 2000 Apr; 275(14):10030-4. PubMed ID: 10744680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally additive fixed positive and negative charges in the CFTR channel pore control anion binding and conductance.
    Linsdell P; Irving CL; Cowley EA
    J Biol Chem; 2022 Mar; 298(3):101659. PubMed ID: 35101441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore.
    Li MS; Cowley EA; El Hiani Y; Linsdell P
    J Biol Chem; 2018 Apr; 293(15):5649-5658. PubMed ID: 29475947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.