These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 2014288)

  • 1. Popliteal artery hemodynamics: MR imaging-US correlation.
    Dousset V; Wehrli FW; Louie A; Listerud J
    Radiology; 1991 May; 179(2):437-41. PubMed ID: 2014288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Popliteal and tibioperoneal arteries: feasibility of two-dimensional time-of-flight MR angiography and phase velocity mapping.
    Caputo GR; Masui T; Gooding GA; Chang JM; Higgins CB
    Radiology; 1992 Feb; 182(2):387-92. PubMed ID: 1732954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero filled partial fourier phase contrast MR imaging: in vitro and in vivo assessment.
    Szarf G; Dori Y; Rettmann D; Tekes A; Nasir K; Amado L; Foo TK; Bluemke DA
    J Magn Reson Imaging; 2006 Jan; 23(1):42-9. PubMed ID: 16315213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing of data acquisition determines image quality in femoropopliteal phase-sensitive MR angiography.
    Lanzer P; Gross G; Nanda N; Pohost G
    Angiology; 1990 Oct; 41(10):817-24. PubMed ID: 2221460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of normal renal artery blood flow: cine phase-contrast MR imaging vs clearance of p-aminohippurate.
    Wolf RL; King BF; Torres VE; Wilson DM; Ehman RL
    AJR Am J Roentgenol; 1993 Nov; 161(5):995-1002. PubMed ID: 8273644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation.
    Lee VS; Spritzer CE; Carroll BA; Pool LG; Bernstein MA; Heinle SK; MacFall JR
    AJR Am J Roentgenol; 1997 Oct; 169(4):1125-31. PubMed ID: 9308476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time interactive duplex MR measurements: application in neurovascular imaging.
    Wetzel SG; Lee VS; Tan AG; Heid O; Cha S; Johnson G; Rofsky NM
    AJR Am J Roentgenol; 2001 Sep; 177(3):703-7. PubMed ID: 11517079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance measurement of blood flow in peripheral vessels after acute exercise.
    Meyer RA; Foley JM; Harkema SJ; Sierra A; Potchen EJ
    Magn Reson Imaging; 1993; 11(8):1085-92. PubMed ID: 8271894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging measurement of blood volume flow in peripheral arteries in healthy subjects.
    Klein WM; Bartels LW; Bax L; van der Graaf Y; Mali WP
    J Vasc Surg; 2003 Nov; 38(5):1060-6. PubMed ID: 14603218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging.
    Caputo GR; Kondo C; Masui T; Geraci SJ; Foster E; O'Sullivan MM; Higgins CB
    Radiology; 1991 Sep; 180(3):693-8. PubMed ID: 1871279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time Fourier velocity encoding: an in vivo evaluation.
    Macgowan CK; Kellenberger CJ; Detsky JS; Roman K; Yoo SJ
    J Magn Reson Imaging; 2005 Mar; 21(3):297-304. PubMed ID: 15723365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effects of therapeutic ultrasound delivered at varying parameters on the blood flow velocity in a muscular distribution artery.
    Fabrizio PA; Schmidt JA; Clemente FR; Lankiewicz LA; Levine ZA
    J Orthop Sports Phys Ther; 1996 Nov; 24(5):294-302. PubMed ID: 8902681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low flow velocity predicts failure of femoropopliteal and femorotibial bypass grafts.
    Bandyk DF; Cato RF; Towne JB
    Surgery; 1985 Oct; 98(4):799-809. PubMed ID: 3901378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Middle cerebral artery: determination of flow velocities with MR angiography.
    Mattle H; Edelman RR; Wentz KU; Reis MA; Atkinson DJ; Ellert T
    Radiology; 1991 Nov; 181(2):527-30. PubMed ID: 1924799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood velocity in human arteries measured by a bidirectional ultrasonic doppler flowmeter.
    Risøe C; Wille SO
    Acta Physiol Scand; 1978 Aug; 103(4):370-8. PubMed ID: 152563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of MR changes with Doppler US measurements of blood flow in exercising normal muscle.
    Morvan D; Vilgrain V; Arrivé L; Nahum H
    J Magn Reson Imaging; 1992; 2(6):645-52. PubMed ID: 1446108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of aortic blood flow with MR imaging: comparative study with Doppler US.
    Matsuda T; Shimizu K; Sakurai T; Fujita A; Ohara H; Okamura S; Hashimoto S; Tamaki S; Kawai C
    Radiology; 1987 Mar; 162(3):857-61. PubMed ID: 3544040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance velocity measurements in small arteries. Comparison with Doppler ultrasonic measurements in the aortas of normal rabbits.
    Wendt RE; Rokey R; Wong WF; Marks A
    Invest Radiol; 1992 Jul; 27(7):499-503. PubMed ID: 1644547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Blood distribution in the human leg arteries during orthostasis: role of the hydrostatic factor and posturotonic straining of the anti-gravity muscles].
    Modin AIu
    Aviakosm Ekolog Med; 2004; 38(5):28-32. PubMed ID: 15605733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular disease in symptomatic and asymptomatic patients with sickle cell anemia: screening with duplex transcranial Doppler US--correlation with MR imaging and MR angiography.
    Seibert JJ; Miller SF; Kirby RS; Becton DL; James CA; Glasier CM; Wilson AR; Kinder DL; Berry DH
    Radiology; 1993 Nov; 189(2):457-66. PubMed ID: 8105505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.