These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 20143117)
1. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Mansouri C; L'huillier JP; Kashou NH; Humeau A Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117 [TBL] [Abstract][Full Text] [Related]
2. Spatial sensitivity of near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling. Mansouri C; Kashou NH Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1457-60. PubMed ID: 19963751 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Okada E; Delpy DT Appl Opt; 2003 Jun; 42(16):2915-22. PubMed ID: 12790440 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Fukui Y; Ajichi Y; Okada E Appl Opt; 2003 Jun; 42(16):2881-7. PubMed ID: 12790436 [TBL] [Abstract][Full Text] [Related]
5. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611 [TBL] [Abstract][Full Text] [Related]
6. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
7. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Strangman GE; Zhang Q; Li Z Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Okada E; Delpy DT Appl Opt; 2003 Jun; 42(16):2906-14. PubMed ID: 12790439 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. Wang L; Ayaz H; Izzetoglu M J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506 [TBL] [Abstract][Full Text] [Related]
10. Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy. Hoshi Y; Shimada M; Sato C; Iguchi Y J Biomed Opt; 2005; 10(6):064032. PubMed ID: 16409097 [TBL] [Abstract][Full Text] [Related]
11. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head. Selb J; Ogden TM; Dubb J; Fang Q; Boas DA J Biomed Opt; 2014 Jan; 19(1):16010. PubMed ID: 24407503 [TBL] [Abstract][Full Text] [Related]
12. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data. Chuang CC; Chen CM; Hsieh YS; Liu TC; Sun CW J Biophotonics; 2013 Mar; 6(3):267-74. PubMed ID: 22678984 [TBL] [Abstract][Full Text] [Related]
13. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation. Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092 [TBL] [Abstract][Full Text] [Related]
14. Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements. Dehaes M; Kazemi K; Pélégrini-Issac M; Grebe R; Benali H; Wallois F Hum Brain Mapp; 2013 Apr; 34(4):878-89. PubMed ID: 22109808 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy. Umeyama S; Yamada T J Biomed Opt; 2009; 14(6):064025. PubMed ID: 20059263 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model. Borjkhani H; Setarehdan SK Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524 [TBL] [Abstract][Full Text] [Related]
17. [Study on the best detector-distance of noninvasive biochemical examination by Monte Carlo simulation]. Dong YF; Lu QP; Ding HQ; Gao HZ Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):942-6. PubMed ID: 25007605 [TBL] [Abstract][Full Text] [Related]
18. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues. Niwayama M J Biomed Opt; 2018 Mar; 23(3):1-4. PubMed ID: 29524320 [TBL] [Abstract][Full Text] [Related]
19. Modeling anisotropic light propagation in a realistic model of the human head. Heiskala J; Nissilä I; Neuvonen T; Järvenpää S; Somersalo E Appl Opt; 2005 Apr; 44(11):2049-57. PubMed ID: 15835354 [TBL] [Abstract][Full Text] [Related]
20. Patient-oriented simulation based on Monte Carlo algorithm by using MRI data. Chuang CC; Lee YT; Chen CM; Hsieh YS; Liu TC; Sun CW Biomed Eng Online; 2012 Apr; 11():21. PubMed ID: 22510474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]