BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 20143120)

  • 1. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms.
    Maier A; Gee MW; Reeps C; Eckstein HH; Wall WA
    Biomech Model Mechanobiol; 2010 Oct; 9(5):511-21. PubMed ID: 20143120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porohyperelastic finite element modeling of abdominal aortic aneurysms.
    Ayyalasomayajula A; Vande Geest JP; Simon BR
    J Biomech Eng; 2010 Oct; 132(10):104502. PubMed ID: 20887020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application.
    Vande Geest JP; Di Martino ES; Bohra A; Makaroun MS; Vorp DA
    Ann N Y Acad Sci; 2006 Nov; 1085():11-21. PubMed ID: 17182918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a model for local drug delivery in abdominal aortic aneurysms.
    Vande Geest JP; Simon BR; Mortazavi A
    Ann N Y Acad Sci; 2006 Nov; 1085():396-9. PubMed ID: 17182962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm.
    Li ZY; U-King-Im J; Tang TY; Soh E; See TC; Gillard JH
    J Vasc Surg; 2008 May; 47(5):928-35. PubMed ID: 18372154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling.
    Tong J; Cohnert T; Regitnig P; Holzapfel GA
    Eur J Vasc Endovasc Surg; 2011 Aug; 42(2):207-19. PubMed ID: 21440466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(13):2347-54. PubMed ID: 16872617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms.
    Li Z; Kleinstreuer C
    J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models.
    Leung JH; Wright AR; Cheshire N; Crane J; Thom SA; Hughes AD; Xu Y
    Biomed Eng Online; 2006 May; 5():33. PubMed ID: 16712729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods).
    Fillinger M
    Ann N Y Acad Sci; 2006 Nov; 1085():22-8. PubMed ID: 17182919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress.
    Mower WR; Quiñones WJ; Gambhir SS
    J Vasc Surg; 1997 Oct; 26(4):602-8. PubMed ID: 9357460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms.
    Vande Geest JP; Wang DH; Wisniewski SR; Makaroun MS; Vorp DA
    Ann Biomed Eng; 2006 Jul; 34(7):1098-106. PubMed ID: 16786395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall.
    Reeps C; Maier A; Pelisek J; Härtl F; Grabher-Meier V; Wall WA; Essler M; Eckstein HH; Gee MW
    Biomech Model Mechanobiol; 2013 Aug; 12(4):717-33. PubMed ID: 22955570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of the effects of intraluminal thrombus on abdominal aortic aneurysm wall dynamics.
    Ene F; Gachon C; Delassus P; Carroll R; Stefanov F; O'Flynn P; Morris L
    Med Eng Phys; 2011 Oct; 33(8):957-66. PubMed ID: 21478044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads.
    Gasser TC; Görgülü G; Folkesson M; Swedenborg J
    J Vasc Surg; 2008 Jul; 48(1):179-88. PubMed ID: 18486417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.
    Papaharilaou Y; Ekaterinaris JA; Manousaki E; Katsamouris AN
    J Biomech; 2007; 40(2):367-77. PubMed ID: 16500664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.