BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2014314)

  • 1. Equivalent total doses for different fractionation schemes, based on the linear quadratic model.
    Muller-Runkel R; Vijayakumar S
    Radiology; 1991 May; 179(2):573-7. PubMed ID: 2014314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical comparison of two linear-quadratic model-based isoeffect fractionation schemes of high-dose-rate intracavitary brachytherapy for cervical cancer.
    Wang CJ; Huang EY; Sun LM; Chen HC; Fang FM; Hsu HC; Changchien CC; Leung SW
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):179-89. PubMed ID: 15093915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tables of equivalent dose in 2 Gy fractions: a simple application of the linear quadratic formula.
    Barton M
    Int J Radiat Oncol Biol Phys; 1995 Jan; 31(2):371-8. PubMed ID: 7836091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in the fractionation sensitivities of human tumor cell lines: studies in a three-dimensional model system.
    Stuschke M; Budach V; Stüben G; Streffer C; Sack H
    Int J Radiat Oncol Biol Phys; 1995 May; 32(2):395-408. PubMed ID: 7751182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dose-time optimization in fractionated radiotherapy].
    Kriester A; Kloetzer KH; Kob D
    Strahlenther Onkol; 1988 Aug; 164(8):489-98. PubMed ID: 3138769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity.
    Akimoto T; Ito K; Saitoh J; Noda SE; Harashima K; Sakurai H; Nakayama Y; Yamamoto T; Suzuki K; Nakano T; Niibe H
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):463-71. PubMed ID: 16168838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superfractionation: its rationale and anticipated benefits.
    Douglas BG
    Int J Radiat Oncol Biol Phys; 1982 Jul; 8(7):1143-53. PubMed ID: 7118617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rationale for fractionation for slowly proliferating tumors such as prostatic adenocarcinoma.
    Fowler JF; Ritter MA
    Int J Radiat Oncol Biol Phys; 1995 May; 32(2):521-9. PubMed ID: 7751194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of normal tissue-to-tumor α/β ratio when evaluating isodoses of isoeffective radiation therapy treatment plans.
    Gay HA; Jin JY; Chang AJ; Ten Haken RK
    Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):e81-7. PubMed ID: 23141886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regarding: Rosenthal DI, Glatstein E. "We've Got a Treatment, but What's the Disease?" The Oncologist 1996;1.
    Lunsford LD; Flickinger JC; Larson D
    Oncologist; 1997; 2(1):59-61. PubMed ID: 10388030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor.
    Otsuka S; Shibamoto Y; Iwata H; Murata R; Sugie C; Ito M; Ogino H
    Int J Radiat Oncol Biol Phys; 2011 Dec; 81(5):1538-43. PubMed ID: 22115556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative analysis of radiobiological models for cell surviving fractions at high doses.
    Andisheh B; Edgren M; Belkić D; Mavroidis P; Brahme A; Lind BK
    Technol Cancer Res Treat; 2013 Apr; 12(2):183-92. PubMed ID: 23098282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas: II--clinical results.
    Lauve A; Morris M; Schmidt-Ullrich R; Wu Q; Mohan R; Abayomi O; Buck D; Holdford D; Dawson K; Dinardo L; Reiter E
    Int J Radiat Oncol Biol Phys; 2004 Oct; 60(2):374-87. PubMed ID: 15380569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Rational dose fractionation schedule 1. Each fractional dose].
    Masuda K; Matsuura K; Miyoshi M; Uehara T
    Gan No Rinsho; 1985 Sep; 31(12):1520-4. PubMed ID: 4079040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypofractionated radiotherapy for T1N0M0 glottic cancer: retrospective analysis of two different cohorts of dose-fractionation schedules from a single institution.
    Laskar SG; Baijal G; Murthy V; Chilukuri S; Budrukkar A; Gupta T; Agarwal JP
    Clin Oncol (R Coll Radiol); 2012 Dec; 24(10):e180-6. PubMed ID: 22862908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the biological effect of fractionated radiotherapy: the importance of radiation-induced apoptosis.
    Olsen DR
    Br J Radiol; 1995 Nov; 68(815):1230-6. PubMed ID: 8542231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects.
    Hoffmann AL; den Hertog D; Siem AY; Kaanders JH; Huizenga H
    Phys Med Biol; 2008 Nov; 53(22):6345-62. PubMed ID: 18941280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization and it's influence on value of doses in HDR and PDR brachytherapy.
    Skowronek J; Zwierzchowski G; Piotrowski T; Milecki P
    Neoplasma; 2010; 57(4):369-76. PubMed ID: 20429630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of errors associated with use of linear-quadratic formalism for evaluation of biologic equivalence between single and hypofractionated radiation doses: an in vitro study.
    Iwata H; Shibamoto Y; Murata R; Tomita N; Ayakawa S; Ogino H; Ito M
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):482-8. PubMed ID: 19735872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.