BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20143367)

  • 1. A HTS assay for the detection of organophosphorus nerve agent scavengers.
    Louise-Leriche L; Paunescu E; Saint-André G; Baati R; Romieu A; Wagner A; Renard PY
    Chemistry; 2010 Mar; 16(11):3510-23. PubMed ID: 20143367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized cyclodextrins bearing an alpha nucleophile--a promising way to degrade nerve agents.
    Estour F; Letort S; Müller S; Kalakuntla RK; Le Provost R; Wille T; Reiter G; Worek F; Lafont O; Gouhier G
    Chem Biol Interact; 2013 Mar; 203(1):202-7. PubMed ID: 23123247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate.
    Han S; Xue Z; Wang Z; Wen TB
    Chem Commun (Camb); 2010 Nov; 46(44):8413-5. PubMed ID: 20936197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (I). Synthesis and preliminary screening: evaluation of the detoxification using a half-quantitative enzymatic assay.
    Kalakuntla RK; Wille T; Le Provost R; Letort S; Reiter G; Müller S; Thiermann H; Worek F; Gouhier G; Lafont O; Estour F
    Toxicol Lett; 2013 Feb; 216(2-3):200-5. PubMed ID: 23201439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic).
    Royo S; Costero AM; Parra M; Gil S; Martínez-Máñez R; Sancenón F
    Chemistry; 2011 Jun; 17(25):6931-4. PubMed ID: 21557360
    [No Abstract]   [Full Text] [Related]  

  • 6. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase.
    Blum MM; Timperley CM; Williams GR; Thiermann H; Worek F
    Biochemistry; 2008 May; 47(18):5216-24. PubMed ID: 18396898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis.
    Worek F; Eyer P; Aurbek N; Szinicz L; Thiermann H
    Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):226-34. PubMed ID: 17112559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of pentylsarin analogues with human acetylcholinesterase: a kinetic study.
    Worek F; Herkert NM; Koller M; Aurbek N; Thiermann H
    Toxicol Lett; 2009 Jun; 187(2):119-23. PubMed ID: 19429253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromogenic detection of nerve agent mimics.
    Costero AM; Gil S; Parra M; Mancini PM; Martínez-Máñez R; Sancenón F; Royo S
    Chem Commun (Camb); 2008 Dec; (45):6002-4. PubMed ID: 19030566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW; Swager TM
    J Am Chem Soc; 2003 Mar; 125(12):3420-1. PubMed ID: 12643690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromo-fluorogenic detection of nerve-agent mimics using triggered cyclization reactions in push-pull dyes.
    Costero AM; Parra M; Gil S; Gotor R; Mancini PM; Martínez-Máñez R; Sancenón F; Royo S
    Chem Asian J; 2010 Jul; 5(7):1573-85. PubMed ID: 20512798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes.
    Candel I; Bernardos A; Climent E; Marcos MD; Martínez-Máñez R; Sancenón F; Soto J; Costero A; Gil S; Parra M
    Chem Commun (Camb); 2011 Aug; 47(29):8313-5. PubMed ID: 21691625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent assay suitable for inhibitor screening and vanin tissue quantification.
    Ruan BH; Cole DC; Wu P; Quazi A; Page K; Wright JF; Huang N; Stock JR; Nocka K; Aulabaugh A; Krykbaev R; Fitz LJ; Wolfman NM; Fleming ML
    Anal Biochem; 2010 Apr; 399(2):284-92. PubMed ID: 20018163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereo-specific synthesis of analogs of nerve agents and their utilization for selection and characterization of paraoxonase (PON1) catalytic scavengers.
    Ashani Y; Gupta RD; Goldsmith M; Silman I; Sussman JL; Tawfik DS; Leader H
    Chem Biol Interact; 2010 Sep; 187(1-3):362-9. PubMed ID: 20303930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose.
    Shih TM; Skovira JW; O'Donnell JC; McDonough JH
    Toxicol Mech Methods; 2009 Sep; 19(6-7):386-400. PubMed ID: 19778239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of nerve agents by an organophosphate-degrading agent (OpdA).
    Dawson RM; Pantelidis S; Rose HR; Kotsonis SE
    J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry.
    Soulard P; McLaughlin M; Stevens J; Connolly B; Coli R; Wang L; Moore J; Kuo MS; LaMarr WA; Ozbal CC; Bhat BG
    Anal Chim Acta; 2008 Oct; 627(1):105-11. PubMed ID: 18790133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes.
    Worek F; Thiermann H; Szinicz L; Eyer P
    Biochem Pharmacol; 2004 Dec; 68(11):2237-48. PubMed ID: 15498514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A; Worek F; Szinicz L; Thiermann H
    Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.