These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 20143542)

  • 1. [The state of epithelial cells and tissues exposed to an electromagnetic field].
    Zheleznov EA; Sheludchenko VM; Fedorov AA
    Vestn Oftalmol; 2009; 125(6):43-6. PubMed ID: 20143542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-effects of extremely low frequency electromagnetic fields (60 Hz.) on the healing of corneal epithelial wound: an in vitro study.
    Basu PK; Menon IA; Chipman M; Avaria M; Hasany SM; Wiltshire JD
    Lens Eye Toxic Res; 1989; 6(1-2):43-58. PubMed ID: 2488033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal epithelial homeostasis.
    Sherwin T; McGhee CN
    Ophthalmology; 2010 Jan; 117(1):190-1; author reply 191-2. PubMed ID: 20114110
    [No Abstract]   [Full Text] [Related]  

  • 4. Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kip1 expression.
    Yao K; Wang KJ; Sun ZH; Tan J; Xu W; Zhu LJ; Lu DQ
    Mol Vis; 2004 Feb; 10():138-43. PubMed ID: 14990889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-energy electromagnetic fields promote proliferation of vascular smooth muscle cells.
    Köbbert C; Berndt A; Bierbaum T; Sontag W; Breithardt G; Weissen-Plenz G; Sindermann JR
    Electromagn Biol Med; 2008; 27(1):41-53. PubMed ID: 18327713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ELF non ionizing radiation changes the distribution of the inner chemical functional groups in human epithelial cell (HaCaT) culture.
    Lisi A; Rieti S; Cricenti A; Flori A; Generosi R; Luce M; Perfetti P; Foletti A; Ledda M; Rosola E; Giuliani L; Grimaldi S
    Electromagn Biol Med; 2006; 25(4):281-9. PubMed ID: 17178587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells.
    Rogers CS; Chan LM; Sims YS; Byrd KD; Hinton DL; Twining SS
    Exp Eye Res; 2004 May; 78(5):1007-14. PubMed ID: 15051481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional model for adult stem cells in epithelial tissues.
    Verstappen J; Katsaros C; Torensma R; Von den Hoff JW
    Wound Repair Regen; 2009; 17(3):296-305. PubMed ID: 19660036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex or whorl formation of cultured corneal epithelial cells induced by magnetic fields.
    Davies NP
    Eye (Lond); 1997; 11 ( Pt 3)():433-4. PubMed ID: 9373506
    [No Abstract]   [Full Text] [Related]  

  • 10. The spark of life: the role of electric fields in regulating cell behaviour using the eye as a model system.
    Forrester JV; Lois N; Zhao M; McCaig C
    Ophthalmic Res; 2007; 39(1):4-16. PubMed ID: 17164572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure.
    Choy CK; Benzie IF; Cho P
    Photochem Photobiol; 2005; 81(3):493-7. PubMed ID: 15773793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation of the processes of post-radiation reparation of the corneal epithelium cells of mice irradiated by helium ions with various LET values].
    Vorozhtsova SV; Fedorenko SB; Shafirkin AV; Chikhladze TsA
    Aviakosm Ekolog Med; 2008; 42(2):53-8. PubMed ID: 18714728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth modification of human colon adenocarcinoma cells exposed to a low-frequency electromagnetic field.
    Ruiz Gómez MJ; Pastor Vega JM; de la Peña L; Gil Carmona L; Martínez Morillo M
    J Physiol Biochem; 1999 Jun; 55(2):79-83. PubMed ID: 10517264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture.
    Koizumi N; Cooper LJ; Fullwood NJ; Nakamura T; Inoki K; Tsuzuki M; Kinoshita S
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2114-21. PubMed ID: 12091405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effect of multipurpose contact lens solutions on the viability of cultured corneal epithelial cells.
    Cavet ME; Harrington KL; VanDerMeid KR; Ward KW; Zhang JZ
    Cont Lens Anterior Eye; 2009 Aug; 32(4):171-5. PubMed ID: 19540795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal, limbal, and conjunctival epithelium of bovine eyes imaged in vitro by using a confocal laser scanning microscope.
    Feng Y; Bantseev V; Simpson TL
    Cornea; 2008 Apr; 27(3):344-8. PubMed ID: 18362665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells.
    Farboud B; Nuccitelli R; Schwab IR; Isseroff RR
    Exp Eye Res; 2000 May; 70(5):667-73. PubMed ID: 10870525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced abnormal epidermal-like differentiation in cultures of mouse corneal-limbal epithelial cells.
    Kawakita T; Espana EM; He H; Yeh LK; Liu CY; Tseng SC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3507-12. PubMed ID: 15452056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective potentiation of gynecologic cancer cell growth in vitro by electromagnetic fields.
    Watson JM; Parrish EA; Rinehart CA
    Gynecol Oncol; 1998 Oct; 71(1):64-71. PubMed ID: 9784321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear ferritin in corneal epithelial cells: tissue-specific nuclear transport and protection from UV-damage.
    Linsenmayer TF; Cai CX; Millholland JM; Beazley KE; Fitch JM
    Prog Retin Eye Res; 2005 Mar; 24(2):139-59. PubMed ID: 15610971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.