These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 20143730)
1. Inhibition and recovery of cholinesterases in Odontophrynus americanus tadpoles exposed to fenitrothion. Lajmanovich RC; Attademo AM; Peltzer PM; Junges CM J Environ Biol; 2009 Sep; 30(5 Suppl):923-6. PubMed ID: 20143730 [TBL] [Abstract][Full Text] [Related]
2. Predator-prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): importance of lateral line in nocturnal predation and effects of fenitrothion exposure. Junges CM; Lajmanovich RC; Peltzer PM; Attademo AM; Bassó A Chemosphere; 2010 Nov; 81(10):1233-8. PubMed ID: 20937517 [TBL] [Abstract][Full Text] [Related]
3. Response and recovery of brain acetylcholinesterase activity in the European eel, Anguilla anguilla, exposed to fenitrothion. Sancho E; Ferrando MD; Andreu E Ecotoxicol Environ Saf; 1997 Dec; 38(3):205-9. PubMed ID: 9469870 [TBL] [Abstract][Full Text] [Related]
4. Response and recovery of acethylcholinesterase activity in the European eel Anguilla anguilla exposed to fenitrothion. Sancho E; Ferrando MD; Andreu E J Environ Sci Health B; 1997 Nov; 32(6):915-28. PubMed ID: 9350079 [TBL] [Abstract][Full Text] [Related]
5. Acetylcholinesterase inhibition in the crayfish Procambarus clarkii exposed to fenitrothion. Escartín E; Porte C Ecotoxicol Environ Saf; 1996 Jul; 34(2):160-4. PubMed ID: 8812182 [TBL] [Abstract][Full Text] [Related]
6. In vivo inhibition of AChE activity in the European eel Anguilla anguilla exposed to technical grade fenitrothion. Sancho E; Ferrando MD; Andreu E Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Oct; 120(3):389-95. PubMed ID: 9827055 [TBL] [Abstract][Full Text] [Related]
8. Cholinesterase response in native birds exposed to fenitrothion during locust control operations in eastern Australia. Fildes K; Astheimer LB; Story P; Buttemer WA; Hooper MJ Environ Toxicol Chem; 2006 Nov; 25(11):2964-70. PubMed ID: 17089720 [TBL] [Abstract][Full Text] [Related]
9. Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm, Bombyx mori L. Surendra Nath B; Surendra Kumar RP Ecotoxicol Environ Saf; 1999 Feb; 42(2):157-62. PubMed ID: 10051365 [TBL] [Abstract][Full Text] [Related]
10. Esterase inhibition in tadpoles of Scinax fuscovarius (Anura, Hylidae) as a biomarker for exposure to organophosphate pesticides. Leite PZ; Margarido TC; de Lima D; Rossa-Feres Dde C; de Almeida EA Environ Sci Pollut Res Int; 2010 Sep; 17(8):1411-21. PubMed ID: 20383595 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Chuiko GM Comp Biochem Physiol C Toxicol Pharmacol; 2000 Dec; 127(3):233-42. PubMed ID: 11246494 [TBL] [Abstract][Full Text] [Related]
12. Variable response of cholinesterase activities following human exposure to different types of organophosphates. Moon J; Chun B; Lee S Hum Exp Toxicol; 2015 Jul; 34(7):698-706. PubMed ID: 25712411 [TBL] [Abstract][Full Text] [Related]
13. Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae. Forcella M; Berra E; Giacchini R; Rossaro B; Parenti P Ecotoxicol Environ Saf; 2007 Mar; 66(3):326-34. PubMed ID: 17166588 [TBL] [Abstract][Full Text] [Related]
14. Activity levels of B-esterases in the tadpoles of 11 species of frogs in the middle Paraná River floodplain: implication for ecological risk assessment of soybean crops. Lajmanovich RC; Peltzer PM; Junges CM; Attademo AM; Sanchez LC; Bassó A Ecotoxicol Environ Saf; 2010 Oct; 73(7):1517-24. PubMed ID: 20708801 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Amitai G; Moorad D; Adani R; Doctor BP Biochem Pharmacol; 1998 Aug; 56(3):293-9. PubMed ID: 9744565 [TBL] [Abstract][Full Text] [Related]
16. Potential of two new oximes in reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by organophosphate compounds: an in vitro study. Costa MD; Freitas ML; Soares FA; Carratu VS; Brandão R Toxicol In Vitro; 2011 Dec; 25(8):2120-3. PubMed ID: 21983245 [TBL] [Abstract][Full Text] [Related]
17. Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Damásio J; Guilhermino L; Soares AM; Riva MC; Barata C Chemosphere; 2007 Nov; 70(1):74-82. PubMed ID: 17764719 [TBL] [Abstract][Full Text] [Related]
18. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat. Milatovic D; Dettbarn WD Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences. Chuiko GM; Podgornaya VA; Zhelnin YY Comp Biochem Physiol B Biochem Mol Biol; 2003 May; 135(1):55-61. PubMed ID: 12781973 [TBL] [Abstract][Full Text] [Related]
20. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability. Wright CI; Geula C; Mesulam MM Ann Neurol; 1993 Sep; 34(3):373-84. PubMed ID: 8363355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]