These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20143788)

  • 21. Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties.
    Li Z; Zhang J; Meng A; Guo J
    J Phys Chem B; 2006 Nov; 110(45):22382-6. PubMed ID: 17091978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.
    Hwang JK; Cho S; Seo EK; Myoung JM; Sung MM
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2843-7. PubMed ID: 20356165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monolayer resist for patterned contact printing of aligned nanowire arrays.
    Takahashi T; Takei K; Ho JC; Chueh YL; Fan Z; Javey A
    J Am Chem Soc; 2009 Feb; 131(6):2102-3. PubMed ID: 19173560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.
    Tomioka K; Kobayashi Y; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2009 Apr; 20(14):145302. PubMed ID: 19420521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generic nano-imprint process for fabrication of nanowire arrays.
    Pierret A; Hocevar M; Diedenhofen SL; Algra RE; Vlieg E; Timmering EC; Verschuuren MA; Immink GW; Verheijen MA; Bakkers EP
    Nanotechnology; 2010 Feb; 21(6):065305. PubMed ID: 20057022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.
    Madaria AR; Yao M; Chi C; Huang N; Lin C; Li R; Povinelli ML; Dapkus PD; Zhou C
    Nano Lett; 2012 Jun; 12(6):2839-45. PubMed ID: 22594573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.
    Bao H; Ruan X
    Opt Lett; 2010 Oct; 35(20):3378-80. PubMed ID: 20967072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon-controlled excitonic emission from vertically-tapered organic nanowires.
    Chikkaraddy R; Patra PP; Tripathi RP; Dasgupta A; Kumar GV
    Nanoscale; 2016 Aug; 8(31):14803-8. PubMed ID: 27444822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M; MacLaren S; Burdin S; Wen JG; Abraham D; Petrov I; Sammann E
    Nanotechnology; 2009 Mar; 20(11):115607. PubMed ID: 19420447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wire-on-wire growth of fluorescent organic heterojunctions.
    Zheng JY; Yan Y; Wang X; Zhao YS; Huang J; Yao J
    J Am Chem Soc; 2012 Feb; 134(6):2880-3. PubMed ID: 22289083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays.
    Koka A; Sodano HA
    Nat Commun; 2013; 4():2682. PubMed ID: 24177706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A substrate-integrated and scalable templated approach based on rusted steel for the fabrication of polypyrrole nanotube arrays.
    Velazquez JM; Gaikwad AV; Rout TK; Rzayev J; Banerjee S
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1238-44. PubMed ID: 21425803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal nanowire arrays by electrodeposition.
    Walter EC; Zach MP; Favier F; Murray BJ; Inazu K; Hemminger JC; Penner RM
    Chemphyschem; 2003 Feb; 4(2):131-8. PubMed ID: 12619411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing.
    Zou W; Quan B; Wang K; Xia L; Yao J; Wei Z
    Small; 2011 Dec; 7(23):3287-91. PubMed ID: 21972036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of metallic and dielectric nanowire arrays on the photoluminescence properties of P3HT thin films.
    Handloser M; Dunbar RB; Wisnet A; Altpeter P; Scheu C; Schmidt-Mende L; Hartschuh A
    Nanotechnology; 2012 Aug; 23(30):305402. PubMed ID: 22751088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The synthesis and electrical characterization of Cu2O/Al:ZnO radial p-n junction nanowire arrays.
    Kuo CL; Wang RC; Huang JL; Liu CP; Wang CK; Chang SP; Chu WH; Wang CH; Tu CH
    Nanotechnology; 2009 Sep; 20(36):365603. PubMed ID: 19687549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile fabrication of a three-dimensional gold nanowire array for high-performance electrochemical sensing.
    Shi L; Chu Z; Liu Y; Jin W
    J Mater Chem B; 2015 Apr; 3(16):3134-3140. PubMed ID: 32262307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.