BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20143808)

  • 1. High-resolution spectral analysis of individual SERS-active nanoparticles in flow.
    Goddard G; Brown LO; Habbersett R; Brady CI; Martin JC; Graves SW; Freyer JP; Doorn SK
    J Am Chem Soc; 2010 May; 132(17):6081-90. PubMed ID: 20143808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell analysis using surface enhanced Raman scattering (SERS) tags.
    Nolan JP; Duggan E; Liu E; Condello D; Dave I; Stoner SA
    Methods; 2012 Jul; 57(3):272-9. PubMed ID: 22498143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput single nanoparticle spectroscopy.
    Sebba DS; Watson DA; Nolan JP
    ACS Nano; 2009 Jun; 3(6):1477-84. PubMed ID: 19472989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flow cytometer for the measurement of Raman spectra.
    Watson DA; Brown LO; Gaskill DF; Naivar M; Graves SW; Doorn SK; Nolan JP
    Cytometry A; 2008 Feb; 73(2):119-28. PubMed ID: 18189283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm).
    McLintock A; Cunha-Matos CA; Zagnoni M; Millington OR; Wark AW
    ACS Nano; 2014 Aug; 8(8):8600-9. PubMed ID: 25106075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widefield SERS for High-Throughput Nanoparticle Screening.
    Liebel M; Calderon I; Pazos-Perez N; van Hulst NF; Alvarez-Puebla RA
    Angew Chem Int Ed Engl; 2022 May; 61(20):e202200072. PubMed ID: 35107845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly approach to multiplexed surface-enhanced Raman spectral-encoder beads.
    Brady CI; Mack NH; Brown LO; Doorn SK
    Anal Chem; 2009 Sep; 81(17):7181-8. PubMed ID: 19670884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering (SERS) cytometry.
    Nolan JP; Sebba DS
    Methods Cell Biol; 2011; 102():515-32. PubMed ID: 21704852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed phantoms for characterizing SERS nanoparticle detectability in turbid media.
    Fales AM; Strobbia P; Vo-Dinh T; Ilev IK; Pfefer TJ
    Analyst; 2020 Sep; 145(18):6045-6053. PubMed ID: 32766656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wide-Field Imaging Approach for Simultaneous Super-Resolution Surface-Enhanced Raman Scattering Bioimaging and Spectroscopy.
    Shoup DN; Scarpitti BT; Schultz ZD
    ACS Meas Sci Au; 2022 Aug; 2(4):332-341. PubMed ID: 35996539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal.
    Amendola V
    Beilstein J Nanotechnol; 2019; 10():1016-1023. PubMed ID: 31165028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
    Qian XM; Nie SM
    Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics.
    Lenzi E; Henriksen-Lacey M; Molina B; Langer J; de Albuquerque CDL; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Sens; 2022 Jun; 7(6):1747-1756. PubMed ID: 35671439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular imaging with SERS-active nanoparticles.
    Zhang Y; Hong H; Myklejord DV; Cai W
    Small; 2011 Dec; 7(23):3261-9. PubMed ID: 21932216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection.
    Lenzi E; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Sens; 2019 May; 4(5):1126-1137. PubMed ID: 31046243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(5):2178-85. PubMed ID: 18220434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.