These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20143855)
1. Microbioreactors for Raman microscopy of stromal cell differentiation. Pully VV; Lenferink A; van Manen HJ; Subramaniam V; van Blitterswijk CA; Otto C Anal Chem; 2010 Mar; 82(5):1844-50. PubMed ID: 20143855 [TBL] [Abstract][Full Text] [Related]
2. Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy. Schulze HG; Konorov SO; Caron NJ; Piret JM; Blades MW; Turner RF Anal Chem; 2010 Jun; 82(12):5020-7. PubMed ID: 20481517 [TBL] [Abstract][Full Text] [Related]
3. Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods. Zhu H; Schulz J; Schliephake H Clin Oral Implants Res; 2010 Feb; 21(2):182-8. PubMed ID: 19958378 [TBL] [Abstract][Full Text] [Related]
4. Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. Jagodzinski M; Breitbart A; Wehmeier M; Hesse E; Haasper C; Krettek C; Zeichen J; Hankemeier S J Biomech; 2008; 41(9):1885-91. PubMed ID: 18495131 [TBL] [Abstract][Full Text] [Related]
5. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A; Bernhardt A; Gelinsky M J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590 [TBL] [Abstract][Full Text] [Related]
6. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Gomes ME; Sikavitsas VI; Behravesh E; Reis RL; Mikos AG J Biomed Mater Res A; 2003 Oct; 67(1):87-95. PubMed ID: 14517865 [TBL] [Abstract][Full Text] [Related]
7. Raman microspectroscopy for non-invasive biochemical analysis of single cells. Swain RJ; Stevens MM Biochem Soc Trans; 2007 Jun; 35(Pt 3):544-9. PubMed ID: 17511648 [TBL] [Abstract][Full Text] [Related]
8. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Notingher I; Hench LL Expert Rev Med Devices; 2006 Mar; 3(2):215-34. PubMed ID: 16515388 [TBL] [Abstract][Full Text] [Related]
9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
10. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor. Holtorf HL; Datta N; Jansen JA; Mikos AG J Biomed Mater Res A; 2005 Aug; 74(2):171-80. PubMed ID: 15965910 [TBL] [Abstract][Full Text] [Related]
11. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
12. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells. Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120 [TBL] [Abstract][Full Text] [Related]
13. Osteoblastic differentiation and mRNA analysis of STRO-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR. Byers RJ; Brown J; Brandwood C; Wood P; Staley W; Hainey L; Freemont AJ; Hoyland JA J Pathol; 1999 Feb; 187(3):374-81. PubMed ID: 10398094 [TBL] [Abstract][Full Text] [Related]
14. Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Bonnier F; Knief P; Lim B; Meade AD; Dorney J; Bhattacharya K; Lyng FM; Byrne HJ Analyst; 2010 Dec; 135(12):3169-77. PubMed ID: 20941442 [TBL] [Abstract][Full Text] [Related]
15. Raman microscopy-based cytochemical investigations of potential niche-forming inhomogeneities present in human embryonic stem cell colonies. Konorov SO; Schulze HG; Piret JM; Aparicio SA; Turner RF; Blades MW Appl Spectrosc; 2011 Sep; 65(9):1009-16. PubMed ID: 21929855 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
17. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of hBMSCs spatial distribution and gene expression in biocoral scaffold with different seeding methods]. Zhu H; Sun L; Chen J; Wang H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jul; 23(7):845-50. PubMed ID: 19662991 [TBL] [Abstract][Full Text] [Related]
20. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Zhao F; Ma T Biotechnol Bioeng; 2005 Aug; 91(4):482-93. PubMed ID: 15895382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]