These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 20144459)
1. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459 [TBL] [Abstract][Full Text] [Related]
2. Fetal nucleated erythrocyte recovery: fluorescence activated cell sorting-based positive selection using anti-gamma globin versus magnetic activated cell sorting using anti-CD45 depletion and anti-gamma globin positive selection. Wang JY; Zhen DK; Falco VM; Farina A; Zheng YL; Delli-Bovi LC; Bianchi DW Cytometry; 2000 Mar; 39(3):224-30. PubMed ID: 10685080 [TBL] [Abstract][Full Text] [Related]
3. Fetal nucleated red blood cells from CVS washings: an aid to development of first trimester non-invasive prenatal diagnosis. Voullaire L; Ioannou P; Nouri S; Williamson R Prenat Diagn; 2001 Oct; 21(10):827-34. PubMed ID: 11746123 [TBL] [Abstract][Full Text] [Related]
4. In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis methods. Ponnusamy S; Mohammed N; Ho SS; Zhang HM; Chan YH; Ng YW; Su LL; Mahyuddin AP; Venkat A; Chan J; Rauff M; Biswas A; Choolani M Prenat Diagn; 2008 Jun; 28(6):494-502. PubMed ID: 18509867 [TBL] [Abstract][Full Text] [Related]
5. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Huang R; Barber TA; Schmidt MA; Tompkins RG; Toner M; Bianchi DW; Kapur R; Flejter WL Prenat Diagn; 2008 Oct; 28(10):892-9. PubMed ID: 18821715 [TBL] [Abstract][Full Text] [Related]
6. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient. Al-Mufti R; Hambley H; Farzaneh F; Nicolaides KH Clin Lab Haematol; 2004 Apr; 26(2):123-8. PubMed ID: 15053806 [TBL] [Abstract][Full Text] [Related]
8. Biochip for separating fetal cells from maternal circulation. Mohamed H; Turner JN; Caggana M J Chromatogr A; 2007 Aug; 1162(2):187-92. PubMed ID: 17628577 [TBL] [Abstract][Full Text] [Related]
9. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
10. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667 [TBL] [Abstract][Full Text] [Related]
11. Sorting cells by size, shape and deformability. Beech JP; Holm SH; Adolfsson K; Tegenfeldt JO Lab Chip; 2012 Mar; 12(6):1048-51. PubMed ID: 22327631 [TBL] [Abstract][Full Text] [Related]
12. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Chen X; Cui D; Liu C; Li H; Chen J Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610 [TBL] [Abstract][Full Text] [Related]
13. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Wang Z; Cheng L; Wei X; Cai B; Sun Y; Zhang Y; Liao L; Zhao XZ Biomed Microdevices; 2020 Oct; 22(4):75. PubMed ID: 33079273 [TBL] [Abstract][Full Text] [Related]
14. The use of in vitro expanded erythroid cells in a model system for the isolation of fetal cells from maternal blood. Jansen MW; von Lindern M; Beug H; Brandenburg H; Wildschut HI; Wladimiroff JW; In 't Veld PA Prenat Diagn; 1999 Apr; 19(4):323-9. PubMed ID: 10327136 [TBL] [Abstract][Full Text] [Related]
15. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. Wei X; Chen K; Guo S; Liu W; Zhao XZ ACS Appl Bio Mater; 2021 Feb; 4(2):1140-1155. PubMed ID: 35014471 [TBL] [Abstract][Full Text] [Related]
16. Red blood cell depletion and enrichment of CD34+ hematopoietic progenitor cells from human umbilical cord blood using soybean agglutinin and CD34 immunoselection. Nagler A; Peacock M; Tantoco M; Lamons D; Okarma TB; Okrongly DA Exp Hematol; 1994 Nov; 22(12):1134-40. PubMed ID: 7523166 [TBL] [Abstract][Full Text] [Related]
17. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735 [TBL] [Abstract][Full Text] [Related]
18. Particle sorting using a porous membrane in a microfluidic device. Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic devices for size-dependent separation of liver cells. Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413 [TBL] [Abstract][Full Text] [Related]
20. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]