BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20144636)

  • 1. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes.
    Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect.
    Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling.
    Paini A; Punt A; Scholz G; Gremaud E; Spenkelink B; Alink G; Schilter B; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2012 Nov; 27(6):653-63. PubMed ID: 22844077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat.
    Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin.
    Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM
    Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment.
    Rietjens IM; Punt A; Schilter B; Scholz G; Delatour T; van Bladeren PJ
    Mol Nutr Food Res; 2010 Feb; 54(2):195-207. PubMed ID: 19943261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats.
    Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical identification of hepatic protein adducts derived from estragole.
    Wakazono H; Gardner I; Eliasson E; Coughtrie MW; Kenna JG; Caldwell J
    Chem Res Toxicol; 1998 Aug; 11(8):863-72. PubMed ID: 9705747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats.
    Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling.
    Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estragole: DNA adduct formation in primary rat hepatocytes and genotoxic potential in HepG2-CYP1A2 cells.
    Schulte-Hubbert R; Küpper JH; Thomas AD; Schrenk D
    Toxicology; 2020 Nov; 444():152566. PubMed ID: 32853702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.
    Punt A; Paini A; Spenkelink A; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 2016 Apr; 29(4):659-68. PubMed ID: 26952143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects.
    Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM
    Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA adduct formation and T lymphocyte mutation induction in F344 rats implanted with tumorigenic doses of 1,6-dinitropyrene.
    Beland FA
    Res Rep Health Eff Inst; 1995 Oct; (72):1-27; discussion 29-39. PubMed ID: 11381742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aflatoxin-albumin adducts: a basis for comparative carcinogenesis between animals and humans.
    Wild CP; Hasegawa R; Barraud L; Chutimataewin S; Chapot B; Ito N; Montesano R
    Cancer Epidemiol Biomarkers Prev; 1996 Mar; 5(3):179-89. PubMed ID: 8833618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix.
    Yang S; Diem M; Liu JDH; Wesseling S; Vervoort J; Oostenbrink C; Rietjens IMCM
    Arch Toxicol; 2020 Apr; 94(4):1349-1365. PubMed ID: 32185416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.
    Paini A; Scholz G; Marin-Kuan M; Schilter B; O'Brien J; van Bladeren PJ; Rietjens IM
    Mutagenesis; 2011 Sep; 26(5):605-18. PubMed ID: 21642616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotoxicity of 1,3-butadiene and its epoxy intermediates.
    Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF;
    Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dosimetry and repair of N(2),3-ethenoguanine in rats exposed to vinyl chloride.
    Morinello EJ; Ham AJ; Ranasinghe A; Nakamura J; Upton PB; Swenberg JA
    Cancer Res; 2002 Sep; 62(18):5189-95. PubMed ID: 12234983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.