BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 20144772)

  • 1. Phototransduction and the evolution of photoreceptors.
    Fain GL; Hardie R; Laughlin SB
    Curr Biol; 2010 Feb; 20(3):R114-24. PubMed ID: 20144772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution and the origin of the visual retinoid cycle in vertebrates.
    Kusakabe TG; Takimoto N; Jin M; Tsuda M
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2897-910. PubMed ID: 19720652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light and the evolution of vision.
    Williams DL
    Eye (Lond); 2016 Feb; 30(2):173-8. PubMed ID: 26541087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of phototransduction, vertebrate photoreceptors and retina.
    Lamb TD
    Prog Retin Eye Res; 2013 Sep; 36():52-119. PubMed ID: 23792002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment.
    Rawlinson KA; Lapraz F; Ballister ER; Terasaki M; Rodgers J; McDowell RJ; Girstmair J; Criswell KE; Boldogkoi M; Simpson F; Goulding D; Cormie C; Hall B; Lucas RJ; Telford MJ
    Elife; 2019 Oct; 8():. PubMed ID: 31635694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity.
    Pergner J; Kozmik Z
    Int J Dev Biol; 2017; 61(10-11-12):665-681. PubMed ID: 29319115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of proteins involved in vertebrate phototransduction.
    Hisatomi O; Tokunaga F
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Dec; 133(4):509-22. PubMed ID: 12470815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Insights from Genetic Data Sets on the Function and Evolution of Visual Systems: Introduction to a Virtual Symposium in The Biological Bulletin.
    Speiser DI; Kier WM
    Biol Bull; 2017 Aug; 233(1):1-2. PubMed ID: 29182500
    [No Abstract]   [Full Text] [Related]  

  • 9. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.
    Kefalov VJ
    J Biol Chem; 2012 Jan; 287(3):1635-41. PubMed ID: 22074928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors.
    Kefalov VJ; Crouch RK; Cornwall MC
    Neuron; 2001 Mar; 29(3):749-55. PubMed ID: 11301033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebrate phototransduction: activation, recovery, and adaptation.
    Jindrová H
    Physiol Res; 1998; 47(3):155-68. PubMed ID: 9803480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of opsins and phototransduction.
    Shichida Y; Matsuyama T
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2881-95. PubMed ID: 19720651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of vertebrate rod and cone phototransduction genes.
    Larhammar D; Nordström K; Larsson TA
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2867-80. PubMed ID: 19720650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of complexity in the visual systems of stomatopods: insights from transcriptomics.
    Porter ML; Speiser DI; Zaharoff AK; Caldwell RL; Cronin TW; Oakley TH
    Integr Comp Biol; 2013 Jul; 53(1):39-49. PubMed ID: 23727979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors.
    Kefalov VJ; Carter Cornwall M; Crouch RK
    J Gen Physiol; 1999 Mar; 113(3):491-503. PubMed ID: 10051522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in our understanding of rhodopsin and phototransduction.
    Pepe IM
    Prog Retin Eye Res; 2001 Nov; 20(6):733-59. PubMed ID: 11587916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes.
    Schott RK; Bhattacharyya N; Chang BSW
    Evolution; 2019 Sep; 73(9):1958-1971. PubMed ID: 31339168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.