BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20144846)

  • 1. Anisotropic dynamic changes in the pore network structure, fluid diffusion and fluid flow in articular cartilage under compression.
    Greene GW; Zappone B; Söderman O; Topgaard D; Rata G; Zeng H; Israelachvili JN
    Biomaterials; 2010 Apr; 31(12):3117-28. PubMed ID: 20144846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic hydraulic permeability in compressed articular cartilage.
    Reynaud B; Quinn TM
    J Biomech; 2006; 39(1):131-7. PubMed ID: 16271597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage.
    Evans RC; Quinn TM
    Arch Biochem Biophys; 2005 Oct; 442(1):1-10. PubMed ID: 16157289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Articular cartilage compression: how microstructural response influences pore pressure in relation to matrix health.
    Fick JM; Thambyah A; Broom ND
    Connect Tissue Res; 2010 Apr; 51(2):132-49. PubMed ID: 20001847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli.
    Kim YJ; Sah RL; Grodzinsky AJ; Plaas AH; Sandy JD
    Arch Biochem Biophys; 1994 May; 311(1):1-12. PubMed ID: 8185305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation of articular cartilage collagen structure under static and cyclic loading.
    Kääb MJ; Ito K; Clark JM; Nötzli HP
    J Orthop Res; 1998 Nov; 16(6):743-51. PubMed ID: 9877400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consolidation responses of delipidized articular cartilage.
    Oloyede A; Gudimetla P; Crawford R; Hills BA
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):534-42. PubMed ID: 15182990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication.
    Greene GW; Zappone B; Zhao B; Söderman O; Topgaard D; Rata G; Israelachvili JN
    Biomaterials; 2008 Nov; 29(33):4455-62. PubMed ID: 18755507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament.
    Setton LA; Mow VC; Müller FJ; Pita JC; Howell DS
    J Orthop Res; 1994 Jul; 12(4):451-63. PubMed ID: 8064477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation and rupture of the articular surface under dynamic and static compression.
    Flachsmann R; Broom ND; Hardy AE
    J Orthop Res; 2001 Nov; 19(6):1131-9. PubMed ID: 11781015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.
    Owen JR; Wayne JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):461-71. PubMed ID: 20700624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic response of cartilage explants to dynamic compression.
    Sah RL; Kim YJ; Doong JY; Grodzinsky AJ; Plaas AH; Sandy JD
    J Orthop Res; 1989; 7(5):619-36. PubMed ID: 2760736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage.
    Wong M; Wuethrich P; Buschmann MD; Eggli P; Hunziker E
    J Orthop Res; 1997 Mar; 15(2):189-96. PubMed ID: 9167620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.