These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20144846)

  • 41. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sliding enhances fluid and solute transport into buried articular cartilage contacts.
    Graham BT; Moore AC; Burris DL; Price C
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2100-2107. PubMed ID: 28888900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative tribology II-Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity.
    Kupratis ME; Gure AE; Benson JM; Ortved KF; Burris DL; Price C
    Acta Biomater; 2022 Jan; 138():375-389. PubMed ID: 34728427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure.
    Bergomi M; Wiskott HW; Botsis J; Mellal A; Belser UC
    J Biomech Eng; 2010 Jan; 132(1):014504. PubMed ID: 20524752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Is classical consolidation theory applicable to articular cartilage deformation?
    Oloyede A; Broom ND
    Clin Biomech (Bristol, Avon); 1991 Nov; 6(4):206-12. PubMed ID: 23915565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic unconfined compression of articular cartilage under a cyclic compressive load.
    Suh JK
    Biorheology; 1996; 33(4-5):289-304. PubMed ID: 8977656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A physical model for the time-dependent deformation of articular cartilage.
    Oloyede A; Broom ND
    Connect Tissue Res; 1993; 29(4):251-61. PubMed ID: 8269702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication.
    Krishnan R; Kopacz M; Ateshian GA
    J Orthop Res; 2004 May; 22(3):565-70. PubMed ID: 15099636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load.
    Oloyede A; Broom ND
    Connect Tissue Res; 1994; 31(1):75-86. PubMed ID: 15609624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time evolution of deformation in a human cartilage under cyclic loading.
    Zhang L; Miramini S; Smith DW; Gardiner BS; Grodzinsky AJ
    Ann Biomed Eng; 2015 May; 43(5):1166-77. PubMed ID: 25331101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.
    Graham BT; Moore AC; Burris DL; Price C
    J Biomech; 2018 Apr; 71():271-276. PubMed ID: 29454544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complex nature of stress inside loaded articular cartilage.
    Oloyede A; Broom ND
    Clin Biomech (Bristol, Avon); 1994 May; 9(3):149-56. PubMed ID: 23916174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport of neutral solute in articular cartilage: effect of microstructure anisotropy.
    Zhang L; Szeri AZ
    J Biomech; 2008; 41(2):430-7. PubMed ID: 17889882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling sample/patient-specific structural and diffusional responses of cartilage using DT-MRI.
    Pierce DM; Ricken T; Holzapfel GA
    Int J Numer Method Biomed Eng; 2013 Aug; 29(8):807-21. PubMed ID: 23345039
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra.
    Afara IO; Singh S; Oloyede A
    J Mech Behav Biomed Mater; 2013 Apr; 20():249-58. PubMed ID: 23384759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow.
    Goulet GC; Cooper DM; Coombe D; Zernicke RF
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):379-87. PubMed ID: 18568832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fundamental fluid transport mechanisms through articular cartilage.
    Mow VC; Torzilli PA
    Ann Rheum Dis; 1975 Dec; 34 Suppl 2():Suppl 82-4. PubMed ID: 25330585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage.
    Evans RC; Quinn TM
    Biophys J; 2006 Aug; 91(4):1541-7. PubMed ID: 16679370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.