BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20144882)

  • 1. The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria.
    Parvez S; Winkler-Stuck K; Hertel S; Schönfeld P; Siemen D
    Biochim Biophys Acta; 2010; 1797(6-7):1245-50. PubMed ID: 20144882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone.
    Sayeed I; Parvez S; Wali B; Siemen D; Stein DG
    Brain Res; 2009 Mar; 1263():165-73. PubMed ID: 19368823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.
    Sayeed I; Parvez S; Winkler-Stuck K; Seitz G; Trieu I; Wallesch CW; Schönfeld P; Siemen D
    FASEB J; 2006 Mar; 20(3):556-8. PubMed ID: 16407457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.
    Grings M; Moura AP; Amaral AU; Parmeggiani B; Gasparotto J; Moreira JC; Gelain DP; Wyse AT; Wajner M; Leipnitz G
    Biochim Biophys Acta; 2014 Sep; 1842(9):1413-22. PubMed ID: 24793416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin.
    Andrabi SA; Sayeed I; Siemen D; Wolf G; Horn TF
    FASEB J; 2004 May; 18(7):869-71. PubMed ID: 15033929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel.
    Cheng Y; Gulbins E; Siemen D
    Cell Physiol Biochem; 2011; 27(3-4):191-200. PubMed ID: 21471707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ropinirole induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in Wistar rats.
    Andrabi SS; Tabassum H; Parveen S; Parvez S
    Neurotoxicology; 2020 Mar; 77():94-104. PubMed ID: 31816341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclosporin A is unable to inhibit carboxyatractyloside-induced permeability transition in aged mitochondria.
    García N; Zazueta C; Martínez-Abundis E; Pavón N; Chávez E
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):374-81. PubMed ID: 18835371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.
    Korotkov SM; Emelyanova LV; Konovalova SA; Brailovskaya IV
    Toxicol In Vitro; 2015 Aug; 29(5):1034-41. PubMed ID: 25910914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duality of effect of La3+ on mitochondrial permeability transition pore depending on the concentration.
    Dong S; Zhao Y; Liu H; Yang X; Wang K
    Biometals; 2009 Dec; 22(6):917-26. PubMed ID: 19399629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca
    Golovach NG; Cheshchevik VT; Lapshina EA; Ilyich TV; Zavodnik IB
    J Membr Biol; 2017 Apr; 250(2):225-236. PubMed ID: 28251264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria.
    Azarashvili T; Grachev D; Krestinina O; Evtodienko Y; Yurkov I; Papadopoulos V; Reiser G
    Cell Calcium; 2007 Jul; 42(1):27-39. PubMed ID: 17174393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative biochemical and ultrastructural comparison of mitochondrial permeability transition in isolated brain and liver mitochondria: evidence for reduced sensitivity of brain mitochondria.
    Berman SB; Watkins SC; Hastings TG
    Exp Neurol; 2000 Aug; 164(2):415-25. PubMed ID: 10915580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane potential-related effect of calcium on reactive oxygen species generation in isolated brain mitochondria.
    Komary Z; Tretter L; Adam-Vizi V
    Biochim Biophys Acta; 2010; 1797(6-7):922-8. PubMed ID: 20230776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome C as an amplifier of ROS release in mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Fiziol Zh (1994); 2012; 58(1):3-12. PubMed ID: 22586905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I-V) coupled with release of apoptotic factors.
    Baburina Y; Azarashvili T; Grachev D; Krestinina O; Galvita A; Stricker R; Reiser G
    Neurochem Int; 2015 Nov; 90():46-55. PubMed ID: 26188334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of opening of mitochondrial permeability transition pore induced by arsenic trioxide].
    Ma XD; Qiao DF; Tian XM; Yan F; Ma AD
    Ai Zheng; 2006 Jan; 25(1):17-21. PubMed ID: 16405743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria.
    Azarashvili T; Krestinina O; Baburina Y; Odinokova I; Akatov V; Beletsky I; Lemasters J; Papadopoulos V
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27983605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.
    Dubinin MV; Vedernikov AA; Khoroshavina EI; Samartsev VN
    Biochemistry (Mosc); 2014 Jun; 79(6):571-6. PubMed ID: 25100016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.