BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 20144900)

  • 1. Activity-dependent changes in the electrophysiological properties of regular spiking neurons in the sensorimotor cortex of the rat in vitro.
    Canu MH; Picquet F; Bastide B; Falempin M
    Behav Brain Res; 2010 Jun; 209(2):289-94. PubMed ID: 20144900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties.
    Kasper EM; Larkman AU; Lübke J; Blakemore C
    J Comp Neurol; 1994 Jan; 339(4):475-94. PubMed ID: 8144742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of intrinsic properties and excitability of layer 2/3 pyramidal neurons during a critical period for sensory maps in rat barrel cortex.
    Maravall M; Stern EA; Svoboda K
    J Neurophysiol; 2004 Jul; 92(1):144-56. PubMed ID: 14973314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 14-day period of hindpaw sensory deprivation enhances the responsiveness of rat cortical neurons.
    Dupont E; Canu MH; Falempin M
    Neuroscience; 2003; 121(2):433-9. PubMed ID: 14522001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hindlimb suspension on activation and MHC content of triceps brachii and on the representation of forepaw on the sensorimotor cortex.
    Canu MH; Stevens L; Falempin M
    Exp Neurol; 2007 Feb; 203(2):521-30. PubMed ID: 17055486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability.
    Langlet C; Bastide B; Canu MH
    Exp Neurol; 2012 Sep; 237(1):211-7. PubMed ID: 22750326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex.
    Trinel D; Picquet F; Bastide B; Canu MH
    Behav Brain Res; 2013 Jul; 249():1-7. PubMed ID: 23608484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.
    Mysoet J; Dupont E; Bastide B; Canu MH
    Behav Brain Res; 2015 Sep; 290():117-23. PubMed ID: 25958232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in intrinsic properties of pyramidal neurons in adult rat S1 during cortical reorganization.
    Hickmott PW
    J Neurophysiol; 2005 Jul; 94(1):501-11. PubMed ID: 15758053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress.
    Kole MH; Czéh B; Fuchs E
    Hippocampus; 2004; 14(6):742-51. PubMed ID: 15318332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in the electrophysiological properties of neonatal rat oculomotor neurons studied in vitro.
    Tsuzuki S; Yoshida S; Yamamoto T; Oka H
    Neurosci Res; 1995 Nov; 23(4):389-97. PubMed ID: 8602279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single whisker experience started on postnatal days 0, 5 or 8 changes temporal characteristics of response integration in layers IV and V of rat barrel cortex neurons.
    Shamsizadeh A; Sheibani V; Arabzadeh S; Afarinesh MR; Farazifard R; Noorbakhsh SM; Fathollahi Y
    Brain Res Bull; 2007 Sep; 74(1-3):29-36. PubMed ID: 17683786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of early postnatal development of cortical neurons that proceed independently of normally present extrinsic influences.
    Annis CM; Robertson RT; O'Dowd DK
    J Neurobiol; 1993 Nov; 24(11):1460-80. PubMed ID: 8283185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets.
    Kasper EM; Larkman AU; Lübke J; Blakemore C
    J Comp Neurol; 1994 Jan; 339(4):459-74. PubMed ID: 8144741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity properties and location of neurons in the motor thalamus that project to the cortical motor areas in monkeys.
    Kurata K
    J Neurophysiol; 2005 Jul; 94(1):550-66. PubMed ID: 15703228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-specific properties of the persistent sodium current in sensorimotor cortex.
    Aracri P; Colombo E; Mantegazza M; Scalmani P; Curia G; Avanzini G; Franceschetti S
    J Neurophysiol; 2006 Jun; 95(6):3460-8. PubMed ID: 16467432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in electrophysiological and morphological properties of neuron in the ventral partition of medial geniculate body during the postnatal development of rats].
    Yao XH; Xiong Y
    Sheng Li Xue Bao; 2005 Jun; 57(3):333-9. PubMed ID: 15968428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of activity in the forelimb motor cortex temporarily enlarges forelimb representation in the homotopic cortex in adult rats.
    Maggiolini E; Viaro R; Franchi G
    Eur J Neurosci; 2008 May; 27(10):2733-46. PubMed ID: 18547253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat.
    Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR
    J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.