These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 20144914)

  • 1. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering.
    Eshraghi S; Das S
    Acta Biomater; 2010 Jul; 6(7):2467-76. PubMed ID: 20144914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.
    Eshraghi S; Das S
    Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method.
    Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties.
    Meng Z; He J; Cai Z; Zhang M; Zhang J; Ling R; Li D
    Biofabrication; 2020 May; 12(3):035012. PubMed ID: 32240988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning.
    Thomas V; Jose MV; Chowdhury S; Sullivan JF; Dean DR; Vohra YK
    J Biomater Sci Polym Ed; 2006; 17(9):969-84. PubMed ID: 17094636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering.
    Cahill S; Lohfeld S; McHugh PE
    J Mater Sci Mater Med; 2009 Jun; 20(6):1255-62. PubMed ID: 19199109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic fabrication of micro-nano bioactive ceramic-optimized polymer scaffolds for bone tissue engineering by in situ hydrothermal deposition and selective laser sintering.
    Xu Y; Ding W; Chen M; Du H; Qin T
    J Biomater Sci Polym Ed; 2022 Nov; 33(16):2104-2123. PubMed ID: 35773230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering.
    Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.
    Hutmacher DW; Schantz T; Zein I; Ng KW; Teoh SH; Tan KC
    J Biomed Mater Res; 2001 May; 55(2):203-16. PubMed ID: 11255172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.
    Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S
    Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.