These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20144920)

  • 1. A monocular marker-free gait measurement system.
    Courtney J; de Paor AM
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):453-60. PubMed ID: 20144920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct comparison of kinematic data collected using an electromagnetic tracking system versus a digital optical system.
    Hassan EA; Jenkyn TR; Dunning CE
    J Biomech; 2007; 40(4):930-5. PubMed ID: 16730353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational framework to predict post-treatment outcome for gait-related disorders.
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    Med Eng Phys; 2008 May; 30(4):434-43. PubMed ID: 17616425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics.
    Martinez del Rincon J; Makris D; Orrite Urunuela C; Nebel JC
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):26-37. PubMed ID: 20388598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors.
    Dejnabadi H; Jolles BM; Casanova E; Fua P; Aminian K
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1385-93. PubMed ID: 16830942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian framework for extracting human gait using strong prior knowledge.
    Zhou Z; Prügel-Bennett A; Damper RI
    IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1738-52. PubMed ID: 17063680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios.
    Shaban HA; Abou el-Nasr M; Buehrer RM
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):284-91. PubMed ID: 20007056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy, reliability, and validity of a spatiotemporal gait analysis system.
    Barker S; Craik R; Freedman W; Herrmann N; Hillstrom H
    Med Eng Phys; 2006 Jun; 28(5):460-7. PubMed ID: 16122966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic analysis of load carriage biomechanics during level walking.
    Ren L; Jones RK; Howard D
    J Biomech; 2005 Apr; 38(4):853-63. PubMed ID: 15713307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of lower extremity kinematics during level walking.
    Kadaba MP; Ramakrishnan HK; Wootten ME
    J Orthop Res; 1990 May; 8(3):383-92. PubMed ID: 2324857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects.
    Alwan M; Ledoux A; Wasson G; Sheth P; Huang C
    Med Eng Phys; 2007 Apr; 29(3):380-9. PubMed ID: 16843697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method of producing a repetitive dynamic signal to examine reliability and validity of gait analysis systems.
    Barker SP; Freedman W; Hillstrom H
    Gait Posture; 2006 Dec; 24(4):448-52. PubMed ID: 16413189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test-subject-tracking measuring carriage with optoelectronic position-feedback control for the kinematic analysis of the gait of orthopedic patients.
    Bodem F; Brussatis F; Mertin B; Wunderlich T; Wagner H
    Med Prog Technol; 1981; 8(3):141-7. PubMed ID: 7311942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A marker-free system for the analysis of movement disabilities.
    Legrand L; Marzani F; Dusserre L
    Stud Health Technol Inform; 1998; 52 Pt 2():1066-70. PubMed ID: 10384624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system for the continuous measurement of ankle joint moment in hemiplegic patients wearing ankle-foot orthoses.
    Miyazaki S; Yamamoto S; Ebina M; Iwasaki M
    Front Med Biol Eng; 1993; 5(3):215-32. PubMed ID: 8280669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems.
    Andersen MS; Damsgaard M; MacWilliams B; Rasmussen J
    Comput Methods Biomech Biomed Engin; 2010; 13(2):171-83. PubMed ID: 19693717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to calculate the centre of the ankle joint: a comparison with the Vicon Plug-in-Gait model.
    Nair SP; Gibbs S; Arnold G; Abboud R; Wang W
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):582-7. PubMed ID: 20388578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of using hierarchical and six degree-of-freedom models for normal gait analyses.
    Buczek FL; Rainbow MJ; Cooney KM; Walker MR; Sanders JO
    Gait Posture; 2010 Jan; 31(1):57-63. PubMed ID: 19796947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.