BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20145108)

  • 1. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways.
    Bentsink L; Hanson J; Hanhart CJ; Blankestijn-de Vries H; Coltrane C; Keizer P; El-Lithy M; Alonso-Blanco C; de Andrés MT; Reymond M; van Eeuwijk F; Smeekens S; Koornneef M
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4264-9. PubMed ID: 20145108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity.
    Fitz Gerald JN; Lehti-Shiu MD; Ingram PA; Deak KI; Biesiada T; Malamy JE
    Genetics; 2006 Jan; 172(1):485-98. PubMed ID: 16157665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population.
    Clerkx EJ; El-Lithy ME; Vierling E; Ruys GJ; Blankestijn-De Vries H; Groot SP; Vreugdenhil D; Koornneef M
    Plant Physiol; 2004 May; 135(1):432-43. PubMed ID: 15122038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse.
    Malmberg RL; Held S; Waits A; Mauricio R
    Genetics; 2005 Dec; 171(4):2013-27. PubMed ID: 16157670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock.
    Edwards KD; Lynn JR; Gyula P; Nagy F; Millar AJ
    Genetics; 2005 May; 170(1):387-400. PubMed ID: 15781708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.
    Fulcher N; Teubenbacher A; Kerdaffrec E; Farlow A; Nordborg M; Riha K
    Genetics; 2015 Feb; 199(2):625-35. PubMed ID: 25488978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural variation in SSW1 coordinates seed growth and nitrogen use efficiency in Arabidopsis.
    Jiang S; Jin X; Liu Z; Xu R; Hou C; Zhang F; Fan C; Wu H; Chen T; Shi J; Hu Z; Wang G; Teng S; Li L; Li Y
    Cell Rep; 2024 May; 43(5):114150. PubMed ID: 38678565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of variation in gene expression in Arabidopsis thaliana.
    Vuylsteke M; van Eeuwijk F; Van Hummelen P; Kuiper M; Zabeau M
    Genetics; 2005 Nov; 171(3):1267-75. PubMed ID: 16020790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery.
    Herridge RP; Day RC; Baldwin S; Macknight RC
    Plant Methods; 2011 Feb; 7(1):3. PubMed ID: 21303553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breeding for reduced seed dormancy to domesticate new grass species.
    Glison N; Gaiero P; Monteverde E; Speranza PR
    Genet Mol Biol; 2024; 47Suppl 1(Suppl 1):e20230262. PubMed ID: 38666746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination.
    Sajeev N; Koornneef M; Bentsink L
    Plant Cell; 2024 May; 36(5):1358-1376. PubMed ID: 38215009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy.
    Chen X; MacGregor DR; Stefanato FL; Zhang N; Barros-Galvão T; Penfield S
    Nat Commun; 2023 Apr; 14(1):2220. PubMed ID: 37072400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of adaptive evolution in wild animals and plants.
    Hu Y; Wang X; Xu Y; Yang H; Tong Z; Tian R; Xu S; Yu L; Guo Y; Shi P; Huang S; Yang G; Shi S; Wei F
    Sci China Life Sci; 2023 Mar; 66(3):453-495. PubMed ID: 36648611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ecology and quantitative genetics of seed and seedling traits in upland and lowland ecotypes of a perennial grass.
    Razzaque S; Juenger TE
    Evol Lett; 2022 Dec; 6(6):460-473. PubMed ID: 36579162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves.
    Morgan BL; Donohue K
    Ann Bot; 2022 Dec; 130(6):883-899. PubMed ID: 36201313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana.
    Song S; Willems LAJ; Jiao A; Zhao T; Eric Schranz M; Bentsink L
    J Exp Bot; 2022 Sep; 73(16):5514-5528. PubMed ID: 35604925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed dormancy varies widely among
    Zacchello G; Bomers S; Böhme C; Postma FM; Ågren J
    Ecol Evol; 2022 Feb; 12(3):e8670. PubMed ID: 35261752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time.
    Abley K; Formosa-Jordan P; Tavares H; Chan EY; Afsharinafar M; Leyser O; Locke JC
    Elife; 2021 Jun; 10():. PubMed ID: 34059197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment.
    Klupczyńska EA; Pawłowski TA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms.
    Gianella M; Bradford KJ; Guzzon F
    Plant Reprod; 2021 Mar; 34(1):21-36. PubMed ID: 33449209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.