These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 20145250)
1. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. Jung HJ; Shim JS; Lee J; Song YM; Park KC; Choi SH; Kim ND; Yoon JH; Mungai PT; Schumacker PT; Kwon HJ J Biol Chem; 2010 Apr; 285(15):11584-95. PubMed ID: 20145250 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial UQCRB regulates VEGFR2 signaling in endothelial cells. Jung HJ; Kim Y; Chang J; Kang SW; Kim JH; Kwon HJ J Mol Med (Berl); 2013 Sep; 91(9):1117-28. PubMed ID: 23708980 [TBL] [Abstract][Full Text] [Related]
3. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Chang J; Jung HJ; Jeong SH; Kim HK; Han J; Kwon HJ Biochem Biophys Res Commun; 2014 Dec; 455(3-4):290-7. PubMed ID: 25446085 [TBL] [Abstract][Full Text] [Related]
4. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish. Cho YS; Jung HJ; Seok SH; Payumo AY; Chen JK; Kwon HJ Biochem Biophys Res Commun; 2013 Apr; 433(4):396-400. PubMed ID: 23454382 [TBL] [Abstract][Full Text] [Related]
5. Identification of a novel small molecule targeting UQCRB of mitochondrial complex III and its anti-angiogenic activity. Jung HJ; Kim KH; Kim ND; Han G; Kwon HJ Bioorg Med Chem Lett; 2011 Feb; 21(3):1052-6. PubMed ID: 21215626 [TBL] [Abstract][Full Text] [Related]
6. Cell-permeable mitochondrial ubiquinol-cytochrome c reductase binding protein induces angiogenesis in vitro and in vivo. Chang J; Jung HJ; Park HJ; Cho SW; Lee SK; Kwon HJ Cancer Lett; 2015 Sep; 366(1):52-60. PubMed ID: 26118773 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. Chandel NS; McClintock DS; Feliciano CE; Wood TM; Melendez JA; Rodriguez AM; Schumacker PT J Biol Chem; 2000 Aug; 275(33):25130-8. PubMed ID: 10833514 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Guzy RD; Hoyos B; Robin E; Chen H; Liu L; Mansfield KD; Simon MC; Hammerling U; Schumacker PT Cell Metab; 2005 Jun; 1(6):401-8. PubMed ID: 16054089 [TBL] [Abstract][Full Text] [Related]
9. Development of a novel class of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) modulators as promising antiangiogenic leads. Jung HJ; Cho M; Kim Y; Han G; Kwon HJ J Med Chem; 2014 Oct; 57(19):7990-8. PubMed ID: 25244355 [TBL] [Abstract][Full Text] [Related]
10. Methylalpinumisoflavone inhibits hypoxia-inducible factor-1 (HIF-1) activation by simultaneously targeting multiple pathways. Liu Y; Veena CK; Morgan JB; Mohammed KA; Jekabsons MB; Nagle DG; Zhou YD J Biol Chem; 2009 Feb; 284(9):5859-68. PubMed ID: 19091749 [TBL] [Abstract][Full Text] [Related]
11. Genetics of mitochondrial electron transport chain in regulating oxygen sensing. Bell EL; Chandel NS Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068 [TBL] [Abstract][Full Text] [Related]
12. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. Jung HJ; Kwon HJ Mol Biosyst; 2013 May; 9(5):930-9. PubMed ID: 23475074 [TBL] [Abstract][Full Text] [Related]
13. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. Kim KH; Kim D; Park JY; Jung HJ; Cho YH; Kim HK; Han J; Choi KY; Kwon HJ J Mol Med (Berl); 2015 May; 93(5):499-509. PubMed ID: 25471482 [TBL] [Abstract][Full Text] [Related]
14. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Brunelle JK; Bell EL; Quesada NM; Vercauteren K; Tiranti V; Zeviani M; Scarpulla RC; Chandel NS Cell Metab; 2005 Jun; 1(6):409-14. PubMed ID: 16054090 [TBL] [Abstract][Full Text] [Related]
15. Hypoxia Promotes Mitochondrial Complex I Abundance via HIF-1α in Complex III and Complex IV Eficient Cells. Saldana-Caboverde A; Nissanka N; Garcia S; Lombès A; Diaz F Cells; 2020 Sep; 9(10):. PubMed ID: 33003371 [TBL] [Abstract][Full Text] [Related]
16. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Kim TH; Hur EG; Kang SJ; Kim JA; Thapa D; Lee YM; Ku SK; Jung Y; Kwak MK Cancer Res; 2011 Mar; 71(6):2260-75. PubMed ID: 21278237 [TBL] [Abstract][Full Text] [Related]
17. Knockout of mitochondrial thioredoxin reductase stabilizes prolyl hydroxylase 2 and inhibits tumor growth and tumor-derived angiogenesis. Hellfritsch J; Kirsch J; Schneider M; Fluege T; Wortmann M; Frijhoff J; Dagnell M; Fey T; Esposito I; Kölle P; Pogoda K; Angeli JP; Ingold I; Kuhlencordt P; Östman A; Pohl U; Conrad M; Beck H Antioxid Redox Signal; 2015 Apr; 22(11):938-50. PubMed ID: 25647640 [TBL] [Abstract][Full Text] [Related]
18. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Lee B; Kim KH; Jung HJ; Kwon HJ Biochem Biophys Res Commun; 2012 Apr; 421(1):76-80. PubMed ID: 22483751 [TBL] [Abstract][Full Text] [Related]
19. Targeting Mitochondrial ROS Production to Reverse the Epithelial-Mesenchymal Transition in Breast Cancer Cells. Monti E; Mancini A; Marras E; Gariboldi MB Curr Issues Mol Biol; 2022 Oct; 44(11):5277-5293. PubMed ID: 36354671 [TBL] [Abstract][Full Text] [Related]
20. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Guzy RD; Schumacker PT Exp Physiol; 2006 Sep; 91(5):807-19. PubMed ID: 16857720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]