These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 20145934)
41. Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Niu Y; Wu GZ; Ye R; Lin WH; Shi QM; Xue LJ; Xu XD; Li Y; Du YG; Xue HW Mol Plant; 2009 Sep; 2(5):1107-22. PubMed ID: 19825684 [TBL] [Abstract][Full Text] [Related]
42. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545 [TBL] [Abstract][Full Text] [Related]
43. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
44. Comprehensive selection of reference genes for quantitative gene expression analysis during seed development in Brassica napus. Machado RD; Christoff AP; Loss-Morais G; Margis-Pinheiro M; Margis R; Körbes AP Plant Cell Rep; 2015 Jul; 34(7):1139-49. PubMed ID: 25721200 [TBL] [Abstract][Full Text] [Related]
45. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Nesi N; Lucas MO; Auger B; Baron C; Lécureuil A; Guerche P; Kronenberger J; Lepiniec L; Debeaujon I; Renard M Plant Cell Rep; 2009 Apr; 28(4):601-17. PubMed ID: 19153740 [TBL] [Abstract][Full Text] [Related]
46. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591 [TBL] [Abstract][Full Text] [Related]
47. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Fu SX; Cheng H; Qi C Mol Biol Rep; 2009 Nov; 36(8):2375-86. PubMed ID: 19219639 [TBL] [Abstract][Full Text] [Related]
48. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. Jedličková V; Hejret V; Demko M; Jedlička P; Štefková M; Robert HS BMC Genomics; 2023 May; 24(1):236. PubMed ID: 37142980 [TBL] [Abstract][Full Text] [Related]
49. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination. Lang S; Liu X; Ma G; Lan Q; Wang X Plant Physiol Biochem; 2014 Oct; 83():316-26. PubMed ID: 25221920 [TBL] [Abstract][Full Text] [Related]
50. Effects of specific organs on seed oil accumulation in Brassica napus L. Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307 [TBL] [Abstract][Full Text] [Related]
51. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. Song J; Jiang L; Jameson PE J Exp Bot; 2015 Aug; 66(16):5067-82. PubMed ID: 25873685 [TBL] [Abstract][Full Text] [Related]
52. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761 [TBL] [Abstract][Full Text] [Related]
53. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Marles MA; Gruber MY; Scoles GJ; Muir AD Phytochemistry; 2003 Mar; 62(5):663-72. PubMed ID: 12620317 [TBL] [Abstract][Full Text] [Related]
54. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
55. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Xiao S; Xu J; Li Y; Zhang L; Shi S; Shi S; Wu J; Liu K Genome; 2007 Jul; 50(7):611-8. PubMed ID: 17893738 [TBL] [Abstract][Full Text] [Related]
56. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Li RJ; Wang HZ; Mao H; Lu YT; Hua W Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595 [TBL] [Abstract][Full Text] [Related]
57. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. Weselake RJ; Shah S; Tang M; Quant PA; Snyder CL; Furukawa-Stoffer TL; Zhu W; Taylor DC; Zou J; Kumar A; Hall L; Laroche A; Rakow G; Raney P; Moloney MM; Harwood JL J Exp Bot; 2008; 59(13):3543-9. PubMed ID: 18703491 [TBL] [Abstract][Full Text] [Related]
58. Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Milkowski C; Baumert A; Schmidt D; Nehlin L; Strack D Plant J; 2004 Apr; 38(1):80-92. PubMed ID: 15053762 [TBL] [Abstract][Full Text] [Related]
59. The Flavonoid Biosynthesis and Regulation in Chen YY; Lu HQ; Jiang KX; Wang YR; Wang YP; Jiang JJ Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613800 [No Abstract] [Full Text] [Related]
60. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. Ning L; Lin Z; Gu J; Gan L; Li Y; Wang H; Miao L; Zhang L; Wang B; Li M BMC Genomics; 2018 Nov; 19(1):806. PubMed ID: 30404610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]