These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20146443)

  • 1. Hydrogen isotope separation in carbon nanotubes: calculation of coupled rotational and translational States at high densities.
    Garberoglio G; Johnson JK
    ACS Nano; 2010 Mar; 4(3):1703-15. PubMed ID: 20146443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum States of hydrogen and its isotopes confined in single-walled carbon nanotubes: dependence on interaction potential and extreme two-dimensional confinement.
    Lu T; Goldfield EM; Gray SK
    J Phys Chem B; 2006 Feb; 110(4):1742-51. PubMed ID: 16471741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum sieving in single-walled carbon nanotubes: effect of interaction potential and rotational-translational coupling.
    Garberoglio G; DeKlavon MM; Johnson JK
    J Phys Chem B; 2006 Feb; 110(4):1733-41. PubMed ID: 16471740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.
    Kowalczyk P; Gauden PA; Terzyk AP; Furmaniak S
    Phys Chem Chem Phys; 2011 May; 13(20):9824-30. PubMed ID: 21503294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns.
    Tanaka H; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Am Chem Soc; 2005 May; 127(20):7511-6. PubMed ID: 15898801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air separation by single wall carbon nanotubes: thermodynamics and adsorptive selectivity.
    Arora G; Sandler SI
    J Chem Phys; 2005 Jul; 123(4):044705. PubMed ID: 16095382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation.
    Jiang J; Sandler SI
    Langmuir; 2004 Dec; 20(25):10910-8. PubMed ID: 15568840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation.
    Mpourmpakis G; Froudakis GE; Lithoxoos GP; Samios J
    J Chem Phys; 2007 Apr; 126(14):144704. PubMed ID: 17444729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quest for Inexpensive Hydrogen Isotopic Fractionation: Do We Need 2D Quantum Confining in Porous Materials or Are Rough Surfaces Enough? The Case of Ammonia Nanoclusters.
    Mella M; Curotto E
    J Phys Chem A; 2016 Oct; 120(41):8148-8159. PubMed ID: 27704841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures.
    Kowalczyk P; Gauden PA; Terzyk AP; Furmaniak S
    J Phys Condens Matter; 2009 Apr; 21(14):144210. PubMed ID: 21825327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation.
    Striolo A; Chialvo AA; Gubbins KE; Cummings PT
    J Chem Phys; 2005 Jun; 122(23):234712. PubMed ID: 16008478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated water adsorption in chemically heterogeneous carbon nanotubes.
    Striolo A; Chialvo AA; Cummings PT; Gubbins KE
    J Chem Phys; 2006 Feb; 124(7):74710. PubMed ID: 16497073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ar, CCl(4) and C(6)H(6) adsorption outside and inside of the bundles of multi-walled carbon nanotubes-simulation study.
    Furmaniak S; Terzyk AP; Gauden PA; Wesołowski RP; Kowalczyk P
    Phys Chem Chem Phys; 2009 Jul; 11(25):4982-95. PubMed ID: 19562128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air separation by single wall carbon nanotubes: Mass transport and kinetic selectivity.
    Arora G; Sandler SI
    J Chem Phys; 2006 Feb; 124(8):084702. PubMed ID: 16512731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.