BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20146478)

  • 1. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars.
    Lee SM; Jo YJ; Kim YS
    J Agric Food Chem; 2010 Mar; 58(5):3116-24. PubMed ID: 20146478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation mechanism of aroma compounds in a glutathione-glucose reaction with fat or oxidized fat.
    Zhao J; Wang T; Xie J; Xiao Q; Cheng J; Chen F; Wang S; Sun B
    Food Chem; 2019 Jan; 270():436-444. PubMed ID: 30174069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic approach for determination of key volatile compounds related to beef flavor in glutathione-Maillard reaction products.
    Lee SM; Kwon GY; Kim KO; Kim YS
    Anal Chim Acta; 2011 Oct; 703(2):204-11. PubMed ID: 21889635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening for glucose-triggered modifications of glutathione.
    Jerić I; Horvat S
    J Pept Sci; 2009 Aug; 15(8):540-7. PubMed ID: 19579211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential antimutagenic and antioxidant effects of Maillard reaction products used as "natural antibrowning" agents.
    Wagner KH; Reichhold S; Koschutnig K; Chériot S; Billaud C
    Mol Nutr Food Res; 2007 Apr; 51(4):496-504. PubMed ID: 17390400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.
    Billaud C; Maraschin C; Peyrat-Maillard MN; Nicolas J
    Ann N Y Acad Sci; 2005 Jun; 1043():876-85. PubMed ID: 16037314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enolization and racemization reactions of glucose and fructose on heating with amino-acid enantiomers and the formation of melanoidins as a result of the Maillard reaction.
    Kim JS; Lee YS
    Amino Acids; 2009 Mar; 36(3):465-74. PubMed ID: 18496645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide and pyrazine formation in model systems containing asparagine.
    Koutsidis G; De la Fuente A; Dimitriou C; Kakoulli A; Wedzicha BL; Mottram DS
    J Agric Food Chem; 2008 Aug; 56(15):6105-12. PubMed ID: 18624441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives.
    Ma J; Peng X; Ng KM; Che CM; Wang M
    Food Funct; 2012 Feb; 3(2):178-86. PubMed ID: 22159289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of key precursor peptides and flavor components of flaxseed derived Maillard reaction products based on iBAQ mass spectrometry and molecular sensory science.
    Ni ZJ; Wei CK; Zheng AR; Thakur K; Zhang JG; Wei ZJ
    Food Chem X; 2022 Mar; 13():100224. PubMed ID: 35146413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of 13C isotopic enrichment of glutathione and glycine by gas chromatography/combustion/isotope ratio mass spectrometry after formation of the N- or N,S-ethoxycarbonyl methyl ester derivatives.
    Tea I; Ferchaud-Roucher V; Küster A; Darmaun D; Robins RJ
    Rapid Commun Mass Spectrom; 2007; 21(20):3245-52. PubMed ID: 17828807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory characteristics and consumer acceptability of beef stock containing glutathione Maillard reaction products prepared at various conditions.
    Kwon GY; Hong JH; Kim YS; Lee SM; Kim KO
    J Food Sci; 2011; 76(1):S1-7. PubMed ID: 21535706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.