These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20146524)

  • 1. Diameter selectivity of protein encapsulation in carbon nanotubes.
    Kang Y; Wang Q; Liu YC; Shen JW; Wu T
    J Phys Chem B; 2010 Mar; 114(8):2869-75. PubMed ID: 20146524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the spontaneous encapsulation of proteins in carbon nanotubes.
    Kang Y; Liu YC; Wang Q; Shen JW; Wu T; Guan WJ
    Biomaterials; 2009 May; 30(14):2807-15. PubMed ID: 19200595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes.
    Kang Y; Wang Q; Liu YC; Wu T; Chen Q; Guan WJ
    J Phys Chem B; 2008 Apr; 112(15):4801-7. PubMed ID: 18366213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.
    Chen Q; Wang Q; Liu YC; Wu T; Kang Y; Moore JD; Gubbins KE
    J Chem Phys; 2009 Jul; 131(1):015101. PubMed ID: 19586122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations.
    Friling SR; Notman R; Walsh TR
    Nanoscale; 2010 Jan; 2(1):98-106. PubMed ID: 20648370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics.
    Katz E; Willner I
    Chemphyschem; 2004 Aug; 5(8):1084-104. PubMed ID: 15446731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current investigations into carbon nanotubes for biomedical application.
    Li X; Fan Y; Watari F
    Biomed Mater; 2010 Apr; 5(2):22001. PubMed ID: 20339169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes: biomaterial applications.
    Saito N; Usui Y; Aoki K; Narita N; Shimizu M; Hara K; Ogiwara N; Nakamura K; Ishigaki N; Kato H; Taruta S; Endo M
    Chem Soc Rev; 2009 Jul; 38(7):1897-903. PubMed ID: 19551170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide encapsulation regulated by the geometry of carbon nanotubes.
    Zhang ZS; Kang Y; Liang LJ; Liu YC; Wu T; Wang Q
    Biomaterials; 2014 Feb; 35(5):1771-8. PubMed ID: 24290699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues.
    Foldvari M; Bagonluri M
    Nanomedicine; 2008 Sep; 4(3):183-200. PubMed ID: 18550450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices.
    Wallace EJ; D'Rozario RS; Sanchez BM; Sansom MS
    Nanoscale; 2010 Jun; 2(6):967-75. PubMed ID: 20648294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation and encapsulation of siRNA inside carbon nanotubes.
    Mogurampelly S; Maiti PK
    J Chem Phys; 2013 Jan; 138(3):034901. PubMed ID: 23343299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins and carbon nanotubes: close encounter in water.
    Nepal D; Geckeler KE
    Small; 2007 Jul; 3(7):1259-65. PubMed ID: 17492743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complement activation by carbon nanotubes.
    Rybak-Smith MJ; Sim RB
    Adv Drug Deliv Rev; 2011 Sep; 63(12):1031-41. PubMed ID: 21669239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study.
    Wallace EJ; Sansom MS
    Nanotechnology; 2009 Jan; 20(4):045101. PubMed ID: 19417309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.